A000452 The greedy sequence of integers which avoids 3-term geometric progressions.
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 101
Offset: 1
Examples
5 is included in the sequence because it is not part of any 3-term geometric progression involving 1,2 or 3. 4 is not included because it forms a geometric progression with 1 and 2. 192 = 2^6 * 3. 6 is not in A005836 because it would make an arithmetic sequence with 0 and 3. So 2^0 * 3 = 3, 2^3 * 3 = 24, and 192 form a geometric progression, and thus 192 is not in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Megumi Asada, Bruce Fang, Eva Fourakis, Sarah Manski, Nathan McNew, Steven J. Miller, Gwyneth Moreland, Ajmain Yamin, and Sindy Xin Zhang, Avoiding 3-Term Geometric Progressions in Hurwitz Quaternions, Williams College (2023).
- Brienne E. Brown and Daniel M. Gordon, On sequences without geometric progressions, Math. Comp., Vol. 65, No. 216 (1996), pp. 1749-1754.
- Robert Alexander Rankin, Sets of Integers Containing not more than a Given Number of Terms in Arithmetical Progression, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 65, No. 4 (1961), pp. 332-344.
- J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J., Vol. 10, No. 2 (1969), pp. 137-146.
- Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems.
Programs
-
Mathematica
a[1] = 1; a[2] = 2; a[3] = 3; ok[n_, an_] := (aa = Append[ Select[ Array[a, n - 1], Divisible[an, #] &], an]; m = Length[aa]; Do[ If[ aa[[j]]^2 == aa[[i]]*an, Return[False]], {i, 1, m - 2}, {j, i + 1, m}]) =!= False; a[n_] := a[n] = For[an = a[n - 1] + 1, True, an++, If[ ok[n, an], Return[an]]]; Table[ a[n], {n, 1, 75}] (* Jean-François Alcover, Sep 21 2012 *)
-
PARI
find(v,x,final=#v,startAt=1)=my(m);while(final-startAt>1,m=(final+startAt)\2;if(v[m]>x,final=m-1,startAt=m));v[startAt]==x||v[final]==x gp3(v,mx,n)=my(c=core(n,1));fordiv(c[2],d,if(d>1&&find(v,n/d,mx)&&find(v,n/d^2,mx),return(1)));0 v=vector(100);v[1]=n=1;for(i=2,#v,while(gp3(v,i-1,n++),);v[i]=n);v \\ Charles R Greathouse IV, Feb 24 2012
-
PARI
is(n)=#select(n->while(n, if(n%3>1, return(1)); n\=3); 0, factor(n)[,2])==0 \\ Charles R Greathouse IV, Sep 16 2015
Extensions
Corrected and extended by David W. Wilson, Aug 15 1996
Clarified and references added by Nathan McNew, Jun 21 2014
Comments