cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A031975 Erroneous version of A000452.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 53
Offset: 1

Views

Author

Keywords

A174648 Partial sums of A000452.

Original entry on oeis.org

1, 3, 6, 11, 17, 24, 32, 42, 53, 66, 80, 95, 111, 128, 147, 168, 190, 213, 237, 263, 290, 319, 349, 380, 413, 447, 482, 519, 557, 596, 636, 677, 719, 762, 808, 855, 903, 954, 1007, 1061, 1116, 1172, 1229, 1287, 1346, 1407, 1469, 1534, 1600, 1667, 1736, 1806
Offset: 1

Views

Author

Jonathan Vos Post, Mar 25 2010

Keywords

Comments

Partial sums of sequence starting with a(1) = 1 and for which a(n) is smallest number which avoids any 3-term G.P. (geometric progression). The subsequence of primes in this partial sum begins: 3, 11, 17, 53, 263, 349, 557, 677, 719, 1061, 1229, 1667, 1877, 2179, 3019, 3203. The subsequence of squares begins: 1, 1600. subsequence of powers of 2 begins: 1, 32, 128.

Examples

			a(9) = 1 + 2 + 3 + 5 + 6 + 7 + 8 + 10 + 11 = 53 is prime.
		

Crossrefs

Cf. A000452.

Formula

a(n) = Sum_{i=1..n} A000452(i).

A005836 Numbers whose base-3 representation contains no 2.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 243, 244, 246, 247, 252, 253, 255, 256, 270, 271, 273, 274, 279, 280, 282, 283, 324, 325, 327, 328, 333, 334, 336, 337, 351, 352
Offset: 1

Views

Author

Keywords

Comments

3 does not divide binomial(2s, s) if and only if s is a member of this sequence, where binomial(2s, s) = A000984(s) are the central binomial coefficients.
This is the lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 3. - Robert Craigen (craigenr(AT)cc.umanitoba.ca), Jan 29 2001
In the notation of A185256 this is the Stanley Sequence S(0,1). - N. J. A. Sloane, Mar 19 2010
Complement of A074940. - Reinhard Zumkeller, Mar 23 2003
Sums of distinct powers of 3. - Ralf Stephan, Apr 27 2003
Numbers n such that central trinomial coefficient A002426(n) == 1 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
A039966(a(n)+1) = 1; A104406(n) = number of terms <= n.
Subsequence of A125292; A125291(a(n)) = 1 for n>1. - Reinhard Zumkeller, Nov 26 2006
Also final value of n - 1 written in base 2 and then read in base 3 and with finally the result translated in base 10. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n) modulo 2 is the Thue-Morse sequence A010060. - Dennis Tseng, Jul 16 2009
Also numbers such that the balanced ternary representation is the same as the base 3 representation. - Alonso del Arte, Feb 25 2011
Fixed point of the morphism: 0 -> 01; 1 -> 34; 2 -> 67; ...; n -> (3n)(3n+1), starting from a(1) = 0. - Philippe Deléham, Oct 22 2011
It appears that this sequence lists the values of n which satisfy the condition sum(binomial(n, k)^(2*j), k = 0..n) mod 3 <> 0, for any j, with offset 0. See Maple code. - Gary Detlefs, Nov 28 2011
Also, it follows from the above comment by Philippe Lallouet that the sequence must be generated by the rules: a(1) = 0, and if m is in the sequence then so are 3*m and 3*m + 1. - L. Edson Jeffery, Nov 20 2015
Add 1 to each term and we get A003278. - N. J. A. Sloane, Dec 01 2019

Examples

			12 is a term because 12 = 110_3.
This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...:
   0
   1
   3,  4
   9, 10, 12, 13
  27, 28, 30, 31, 36, 37, 39, 40
  81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121
... - _Philippe Deléham_, Jun 06 2015
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E10, pp. 317-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A039966 (characteristic function).
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 3 of array A104257.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
See also A000452.

Programs

  • Haskell
    a005836 n = a005836_list !! (n-1)
    a005836_list = filter ((== 1) . a039966) [0..]
    -- Reinhard Zumkeller, Jun 09 2012, Sep 29 2011
    
  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 3
        end
    r end; [a(n) for n in 0:57] |> println # Peter Luschny, Jan 03 2021
  • Maple
    t := (j, n) -> add(binomial(n,k)^j, k=0..n):
    for i from 1 to 400 do
        if(t(4,i) mod 3 <>0) then print(i) fi
    od; # Gary Detlefs, Nov 28 2011
    # alternative Maple program:
    a:= proc(n) option remember: local k, m:
    if n=1 then 0 elif n=2 then 1 elif n>2 then k:=floor(log[2](n-1)): m:=n-2^k: procname(m)+3^k: fi: end proc:
    seq(a(n), n=1.. 20); # Paul Weisenhorn, Mar 22 2020
    # third Maple program:
    a:= n-> `if`(n=1, 0, irem(n-1, 2, 'q')+3*a(q+1)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    Table[FromDigits[IntegerDigits[k, 2], 3], {k, 60}]
    Select[Range[0, 400], DigitCount[#, 3, 2] == 0 &] (* Harvey P. Dale, Jan 04 2012 *)
    Join[{0}, Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 57}]]] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
    FromDigits[#,3]&/@Tuples[{0,1},7] (* Harvey P. Dale, May 10 2019 *)
  • PARI
    A=vector(100);for(n=2,#A,A[n]=if(n%2,3*A[n\2+1],A[n-1]+1));A \\ Charles R Greathouse IV, Jul 24 2012
    
  • PARI
    is(n)=while(n,if(n%3>1,return(0));n\=3);1 \\ Charles R Greathouse IV, Mar 07 2013
    
  • PARI
    a(n) = fromdigits(binary(n-1),3);  \\ Gheorghe Coserea, Jun 15 2018
    
  • Python
    def A005836(n):
        return int(format(n-1,'b'),3) # Chai Wah Wu, Jan 04 2015
    

Formula

a(n) = A005823(n)/2 = A003278(n)-1 = A033159(n)-2 = A033162(n)-3.
Numbers n such that the coefficient of x^n is > 0 in prod (k >= 0, 1 + x^(3^k)). - Benoit Cloitre, Jul 29 2003
a(n+1) = Sum_{k=0..m} b(k)* 3^k and n = Sum( b(k)* 2^k ).
a(2n+1) = 3a(n+1), a(2n+2) = a(2n+1) + 1, a(0) = 0.
a(n+1) = 3*a(floor(n/2)) + n - 2*floor(n/2). - Ralf Stephan, Apr 27 2003
G.f.: (x/(1-x)) * Sum_{k>=0} 3^k*x^2^k/(1+x^2^k). - Ralf Stephan, Apr 27 2003
a(n) = Sum_{k = 1..n-1} (1 + 3^A007814(k)) / 2. - Philippe Deléham, Jul 09 2005
From Reinhard Zumkeller, Mar 02 2008: (Start)
A081603(a(n)) = 0.
If the offset were changed to zero, then: a(0) = 0, a(n+1) = f(a(n)+1, a(n)+1) where f(x, y) = if x < 3 and x <> 2 then y else if x mod 3 = 2 then f(y+1, y+1) else f(floor(x/3), y). (End)
With offset a(0) = 0: a(n) = Sum_{k>=0} A030308(n,k)*3^k. - Philippe Deléham, Oct 15 2011
a(2^n) = A003462(n). - Philippe Deléham, Jun 06 2015
We have liminf_{n->infinity} a(n)/n^(log(3)/log(2)) = 1/2 and limsup_{n->infinity} a(n)/n^(log(3)/log(2)) = 1. - Gheorghe Coserea, Sep 13 2015
a(2^k+m) = a(m) + 3^k with 1 <= m <= 2^k and 1 <= k, a(1)=0, a(2)=1. - Paul Weisenhorn, Mar 22 2020
Sum_{n>=2} 1/a(n) = 2.682853110966175430853916904584699374821677091415714815171756609672281184705... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022
A065361(a(n)) = n-1. - Rémy Sigrist, Feb 06 2023
a(n) ≍ n^k, where k = log 3/log 2 = 1.5849625007. (I believe the constant varies from 1/2 to 1.) - Charles R Greathouse IV, Mar 29 2024

Extensions

Offset corrected by N. J. A. Sloane, Mar 02 2008
Edited by the Associate Editors of the OEIS, Apr 07 2009

A224853 Lexicographically earliest sequence of nonnegative integers which does not contain a three-term arithmetic, geometric, or harmonic subsequence.

Original entry on oeis.org

0, 1, 3, 4, 10, 11, 13, 14, 29, 30, 32, 33, 38, 39, 41, 42, 85, 86, 88, 89, 94, 95, 97, 98, 112, 113, 115, 116, 122, 123, 125, 238, 248, 251, 252, 255, 257, 260, 261, 273, 275, 278, 279, 287, 288, 292, 330, 331, 334, 335
Offset: 1

Views

Author

Timur Vural, Jul 28 2013

Keywords

Comments

This sequence diverges from A225571 at 477th term. Here a(477) = 17408, while A225571(477) = 17380. - Giovanni Resta, Jul 29 2013

Examples

			After terms 0, 1, 3, 4 have been added, the terms 5,...,9 are forbidden by subsequences (3,4,5), (0,3,6), (1,4,7), (0,4,8) and (1,3,9) so the next term is 10.
		

Crossrefs

Programs

  • Python
    # Program that generates all values of a(x) less than a given input n.
    def a(n):
          seq=[0, 1]
          for x in range(2, n+1):
              c=0
              for y in seq:
                  if (x+y)/2 not in seq:
                      if (x*y)**0.5 not in seq[1:]:
                          if (2*x*y)/(x+y) not in seq[1:]:
                              c+=1
              if c==len(seq):
                  seq.append(x)
          return seq

A225571 Lexicographically earliest sequence of nonnegative integers which does not contain a three-term arithmetic or geometric subsequence.

Original entry on oeis.org

0, 1, 3, 4, 10, 11, 13, 14, 29, 30, 32, 33, 38, 39, 41, 42, 85, 86, 88, 89, 94, 95, 97, 98, 112, 113, 115, 116, 122, 123, 125, 238, 248, 251, 252, 255, 257, 260, 261, 273, 275, 278, 279, 287, 288, 292, 330, 331, 334, 335
Offset: 1

Views

Author

Giovanni Resta, Jul 29 2013

Keywords

Comments

This sequence diverges from A224853 at 477th term. Here a(477) = 17380, while A224853(477) = 17408.

Examples

			After terms 0, 1, 3, 4 have been added, the terms 5,...,9 are forbidden by subsequences (3,4,5), (0,3,6), (1,4,7), (0,4,8) and (1,3,9) so the next term is 10.
		

Crossrefs

Programs

  • Mathematica
    seq = {0, 1}; bad[n_] := Catch[ Do[If[MemberQ[seq, (n + e)/2], Throw@True], {e, seq}];  Do[If[MemberQ[seq, Sqrt[n*e]], Throw@True], {e, Rest@ seq}]; False]; While[Length[seq] < 100, x = Last[seq]+1; While[bad[x], x++]; AppendTo[seq, x]]; seq

A268811 Sequence of positive integers where each is chosen to be as small as possible subject to the condition that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a geometric progression.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 5, 5, 6, 5, 5, 6, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 5, 5, 6, 5, 5, 6, 2, 3, 3, 5, 5, 6, 5, 5, 6, 6, 7, 7, 6, 7, 7, 8, 8, 10, 6, 7, 7, 6, 7, 7, 8, 8, 10, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 5, 5, 6, 5, 5, 6, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2
Offset: 1

Views

Author

Aaron David Fairbanks, Feb 13 2016

Keywords

Comments

Apparently: all terms belong to A000452, and for any k > 0, the value A000452(k) first appears at index A265316(k+1). - Rémy Sigrist, May 13 2021

Crossrefs

Programs

  • C
    // See Links section.
  • Python
    A268811_list = []
    for n in range(1000):
        i, j, b = 1, 1, set()
        while n-2*i >= 0:
            b.add(A268811_list[n-i]**2/A268811_list[n-2*i])
            i += 1
            while j in b:
                b.remove(j)
                j += 1
        A268811_list.append(j)
    

A289206 Greedy strictly increasing sequence starting at a(1)=1 avoiding both arithmetic and geometric progressions of length 3.

Original entry on oeis.org

1, 2, 5, 6, 12, 13, 15, 16, 32, 33, 35, 39, 40, 42, 56, 81, 84, 85, 88, 90, 93, 94, 108, 109, 113, 115, 116, 159, 189, 207, 208, 222, 223, 232, 235, 240, 243, 244, 249, 250, 252, 259, 267, 271, 289, 304, 314, 318, 325, 340, 342, 397, 504, 508, 511, 531, 549
Offset: 1

Views

Author

Roderick MacPhee, Jun 28 2017

Keywords

Comments

By avoiding arithmetic progressions, at most 2/3 of the numbers up to a(n) are in the sequence. The sequence doesn't contain 3 consecutive powers in arithmetic progression for any base c.
Where a(n)+1 = a(n+1): 1, 3, 5, 7, 9, 12, 17, 21, 23, 26, 30, 32, 37, 39, etc. - Robert G. Wilson v, Jul 02 2017

Examples

			5 is in the sequence because 1,2,5 is neither an arithmetic progression nor a geometric progression.
		

Crossrefs

Programs

  • PARI
    {my(a=[1,2]);
    for(x=3,100,
    if(#select(r->#select(q->q==2*r,b)==0,b=vecsort(apply(r->x-r,a)))==#a && #select(r->#select(q->q==r^2,b)==0,b=vecsort(apply(r->x/r,a)))==#a,a=concat(a,x)));a
    }
    
  • PARI
    first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, my(avoid=List(),t,last=v[k-1]); for(i=2,k-1, for(j=1,i-1, t=2*v[i]-v[j]; if(t>last, listput(avoid, t)); if(denominator(t=v[i]^2/v[j])==1 && t>last, listput(avoid,t)))); avoid=Set(avoid); for(i=v[k-1]+1,v[k-1]+#avoid+1, if(!setsearch(avoid,i), v[k]=i; break))); v \\ Charles R Greathouse IV, Jun 29 2017

Formula

a(n) >= 3n/2 for n > 2.

Extensions

More terms from Alois P. Heinz, Jun 28 2017

A381137 Lexicographically earliest sequence of distinct positive integers such that no 3 terms are in harmonic progression.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 81, 82, 83, 85, 86
Offset: 1

Views

Author

Neal Gersh Tolunsky, Feb 15 2025

Keywords

Comments

A harmonic progression is a sequence of values whose reciprocals are in arithmetic progression. Equivalently, if (a, b, c) is a harmonic progression, then b is the harmonic mean of a and c.
a(n) is the smallest integer greater than a(n-1) which does not form a 3-term harmonic progression with 2 previously occurring terms.
Every prime occurs in the sequence.

Examples

			6 is not a term in the sequence because it would form a harmonic progression with 2 and 3, which occurred earlier. The progression (1/6, 1/3, 1/2) has common difference 1/6.
		

Crossrefs

Analogous sequences: A003278 (for arithmetic progressions), A000452 (for geometric progressions).

Programs

  • Python
    from itertools import count
    def A381137_generator():
        a_list = []
        forbidden = set()
        a = 0
        while 1:
            a = next(k for k in count(a+1) if k not in forbidden)
            yield a
            forbidden.update(a*b//m for b in a_list if (m:=2*b-a) > 0 and a*b%m == 0)
            a_list.append(a) # Pontus von Brömssen, Mar 04 2025
Showing 1-8 of 8 results.