A000513 Number of equivalence classes of n X n matrices over {0,1} with rows and columns summing to 4, where equivalence is defined by row and column permutations. Also number of isomorphism classes of bicolored quartic bipartite graphs, where isomorphism cannot exchange the colors.
0, 0, 0, 1, 1, 4, 16, 194, 3529, 121790, 5582612, 317579783, 21543414506, 1711281449485, 157117486414656, 16502328443493967, 1965612709107379155, 263512349078757245789, 39497131936385398782814, 6579940884199010139737829, 1211896874083479131415289345, 245593008009270037388205883048
Offset: 1
Keywords
Examples
a(4) = 1: 1111 1111 1111 1111 a(5)=1: 01111 10111 11011 11101 11110 Two of the four examples with n = 6: 111100 . 111100 110011 . 011110 001111 . 001111 111100 . 100111 110011 . 110011 001111 . 111001
References
- A. Burgess, P. Danziger, E. Mendelsohn, B. Stevens, Orthogonally Resolvable Cycle Decompositions, 2013; http://www.math.ryerson.ca/~andrea.burgess/OCD-submit.pdf
Links
- A. Al-Azemi, Isomorph-rejection: theory and an application, Kuwait J. Sci., 39 (2A) (2012), 1-14. - From _N. J. A. Sloane_, Mar 01 2013
- A. Burgess, P. Danziger, E. Mendelsohn, B. Stevens, Orthogonally Resolvable Cycle Decompositions, Journal of Combinatorial Designs, Volume 23, Issue 8, August 2015, Pages 328-351.
- Index entries for sequences related to Latin squares and rectangles
Extensions
Definition corrected by Brendan McKay, May 28 2006
Offset corrected and a(12) added (from Al-Azemi) by N. J. A. Sloane, Mar 01 2013
Terms a(13) and beyond from Andrew Howroyd, Apr 01 2020