A000519 Number of equivalence classes of nonzero regular 0-1 matrices of order n.
1, 2, 3, 5, 7, 18, 43, 313, 7525, 846992, 324127859, 403254094631, 1555631972009429, 19731915624463099552, 791773335030637885025287, 107432353216118868234728540267, 47049030539260648478475949282317451, 71364337698829887974206671525372672234854
Offset: 1
Keywords
Examples
For n = 4, representatives of the a(4) = 5 classes are [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 1 1 0] [1 1 1 1] [0 1 0 0] [1 1 0 0] [0 1 1 0] [1 1 0 1] [1 1 1 1] [0 0 1 0] [0 0 1 1] [0 0 1 1] [1 0 1 1] [1 1 1 1] [0 0 0 1] [0 0 1 1] [1 0 0 1] [0 1 1 1] [1 1 1 1]. G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 18*x^6 + 43*x^7 + 313*x^8 + 7525*x^9 + ...
Formula
a(n) = A333681(n-1). - Andrew Howroyd, Apr 03 2020
Extensions
Description changed, after discussion with Andrew Howroyd, by Brendan McKay, Nov 18 2015
Terms a(12) and beyond from Andrew Howroyd, Apr 03 2020
Comments