A000560 Number of ways of folding a strip of n labeled stamps.
1, 2, 5, 12, 33, 87, 252, 703, 2105, 6099, 18689, 55639, 173423, 526937, 1664094, 5137233, 16393315, 51255709, 164951529, 521138861, 1688959630, 5382512216, 17547919924, 56335234064, 184596351277, 596362337295, 1962723402375
Offset: 2
References
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
Links
- T. D. Noe, Table of n, a(n) for n = 2..44 (derived from A000682)
- CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
- P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, arXiv:hep-th/9607039, 1996; Nucl. Phys. B 482 [FS] (1996), 497-535.
- R. Dickau, Stamp Folding
- R. Dickau, Stamp Folding [Cached copy, pdf format, with permission]
- I. Jensen, Home page
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
- W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
- David Orden, In how many ways can you fold a strip of stamps?, 2014.
- A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
- Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
- J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
- J. Touchard, Contributions à l'étude du problème des timbres poste, Canad. J. Math., 2 (1950), 385-398.
- M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
- Index entries for sequences obtained by enumerating foldings
Programs
-
Mathematica
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]]; a[n_] := A000682[[n + 1]]/2; a /@ Range[2, 44] (* Jean-François Alcover, Sep 03 2019 *) A000136 = Import["https://oeis.org/A000136/b000136.txt", "Table"][[All, 2]]; a[n_] := A000136[[n + 1]]/(2 n + 2); a /@ Range[2, 44] (* Jean-François Alcover, Sep 06 2019 *)
Formula
a(n) = (1/2)*A000682(n+1) for n >= 2.
a(n) = A000136(n+1)/(2*n+2) for n >= 2. - Jean-François Alcover, Sep 06 2019 (from formula in A000136)
Extensions
Computed to n = 45 by Iwan Jensen - see link in A000682.