A000682
Semi-meanders: number of ways a semi-infinite directed curve can cross a straight line n times.
Original entry on oeis.org
1, 1, 2, 4, 10, 24, 66, 174, 504, 1406, 4210, 12198, 37378, 111278, 346846, 1053874, 3328188, 10274466, 32786630, 102511418, 329903058, 1042277722, 3377919260, 10765024432, 35095839848, 112670468128, 369192702554, 1192724674590, 3925446804750
Offset: 1
a(4) = 4: the four solutions with three crossings are the two solutions shown in A086441(3) together with their reflections about a North-South axis.
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Jensen, Table of n, a(n) for n = 1..45
- CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, arXiv:hep-th/9607039, 1996; Nucl. Phys. B 482 [ FS ] (1996) 497-535.
- P. Di Francesco, Matrix model combinatorics: applications to folding and coloring, arXiv:math-ph/9911002, 1999.
- I. Jensen, Home page
- I. Jensen, Terms a(1)..a(45)
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
- M. La Croix, Approaches to the Enumerative Theory of Meanders
- Stéphane Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025 [math.CO], 2013.
- Stéphane Legendre, Illustration of initial terms
- Bowie Liu, Dennis Wong, Chan-Tong Lam, and Marcus Im, Recursive and iterative approaches to generate rotation Gray codes for stamp foldings and semi-meanders, arXiv:2411.05458 [cs.DS], 2024. See p. 2.
- W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
- A. Panayotopoulos and P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
- Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
- J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
- J. Touchard, Contributions à l'étude du problème des timbres poste, Canad. J. Math., 2 (1950), 385-398.
- Index entries for sequences obtained by enumerating foldings
Sade gives the first 11 terms. Computed to n = 45 by Iwan Jensen.
A000136
Number of ways of folding a strip of n labeled stamps.
Original entry on oeis.org
1, 2, 6, 16, 50, 144, 462, 1392, 4536, 14060, 46310, 146376, 485914, 1557892, 5202690, 16861984, 56579196, 184940388, 622945970, 2050228360, 6927964218, 22930109884, 77692142980, 258360586368, 877395996200, 2929432171328, 9968202968958, 33396290888520, 113837957337750
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
- T. D. Noe, Table of n, a(n) for n = 1..45
- Oswin Aichholzer, Florian Lehner, and Christian Lindorfer, Folding polyominoes into cubes, arXiv:2402.14965 [cs.CG], 2024. See p. 9.
- T. Asano, E. D. Demaine, M. L. Demaine and R. Uehara, NP-completeness of generalized Kaboozle, J. Information Processing, 20 (July, 2012), 713-718.
- CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
- R. Dickau, Stamp Folding
- R. Dickau, Stamp Folding [Cached copy, pdf format, with permission]
- Thomas C. Hull, Adham Ibrahim, Jacob Paltrowitz, Natalya Ter-Saakov, and Grace Wang, The Stamp Folding Problem From a Mountain-Valley Perspective: Enumerations and Bounds, arXiv:2503.23661 [math.CO], 2025. See p. 1.
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
- Stéphane Legendre, The 16 foldings of 4 labeled stamps
- Bowie Liu, Dennis Wong, Chan-Tong Lam, and Marcus Im, Recursive and iterative approaches to generate rotation Gray codes for stamp foldings and semi-meanders, arXiv:2411.05458 [cs.DS], 2024. See p. 2.
- W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
- David Orden, In how many ways can you fold a strip of stamps?, 2014.
- A. Panayotopoulos and P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
- Frank Ruskey, Information on Stamp Foldings
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 41.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 41. [Incomplete annotated scan of title page and pages 18-51]
- J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
- Eric Weisstein's World of Mathematics, Stamp Folding
- M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
- Index entries for sequences obtained by enumerating foldings
A001417
Number of ways of folding a 2 X 2 X ... X 2 n-dimensional map.
Original entry on oeis.org
1, 2, 8, 96, 4608, 798720, 361267200, 362794844160
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A001418
Number of ways of folding an n X n sheet of stamps.
Original entry on oeis.org
1, 8, 1368, 300608, 186086600, 123912532224, 129950723279272
Offset: 1
For n = 2 the a(2) = 8 foldings of a sheet labeled 1234 in reading order are 1243, 1342, 2134, 2431, 3124, 3421, 4213, 4312.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A086441
Number of inequivalent ways a semi-infinite curve can cross a straight line n times.
Original entry on oeis.org
1, 1, 2, 4, 11, 27, 79, 213, 644, 1840, 5660
Offset: 1
The a(3) = 2 solutions with 3 crossings. The line is drawn horizontally. The curve starts at oo and ends at X. The crossings are indicated by stars.
-- X
/ \ /
-----*----*----*----
/ \ /
/ --
/
oo
---
/ \
/ X \
/ | \
-----*----*----*----
/ | /
/ .---
/
oo
A259701
Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k and the second element is not 2.
Original entry on oeis.org
0, 1, 0, 2, 0, 0, 5, 0, 1, 0, 12, 0, 2, 0, 0, 33, 1, 7, 0, 1, 0, 87, 2, 17, 0, 2, 0, 0, 252, 11, 55, 2, 9, 0, 1, 0, 703, 26, 145, 4, 22, 0, 2, 0, 0, 2105, 109, 467, 27, 81, 3, 11, 0, 1, 0, 6099, 280, 1296, 63, 215, 6, 27, 0, 2, 0, 0
Offset: 2
Triangle begins:
0;
1, 0;
2, 0, 0;
5, 0, 1, 0;
12, 0, 2, 0, 0;
33, 1, 7, 0, 1, 0;
87, 2, 17, 0, 2, 0, 0;
252, 11, 55, 2, 9, 0, 1, 0;
703, 26, 145, 4, 22, 0, 2, 0, 0;
2105, 109, 467, 27, 81, 3, 11, 0, 1, 0;
...
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949
Row sums excluding the first column give
A259702.
-
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(v[2]<>2 && Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
A259703
Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 2, 2, 1, 12, 5, 4, 2, 1, 33, 13, 12, 4, 3, 1, 87, 35, 30, 12, 6, 3, 1, 252, 98, 90, 32, 21, 6, 4, 1, 703, 278, 243, 94, 54, 21, 8, 4, 1, 2105, 812, 745, 270, 175, 57, 32, 8, 5, 1, 6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1
Offset: 2
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 2, 2, 1;
12, 5, 4, 2, 1;
33, 13, 12, 4, 3, 1;
87, 35, 30, 12, 6, 3, 1;
252, 98, 90, 32, 21, 6, 4, 1;
703, 278, 243, 94, 54, 21, 8, 4, 1;
2105, 812, 745, 270, 175, 57, 32, 8, 5, 1;
6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1;
...
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949
-
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
A001416
Number of ways of folding a 3 X n strip of stamps.
Original entry on oeis.org
1, 6, 60, 1368, 15552, 201240, 2016432, 21582624, 201060768, 1944012744, 17257455960, 156760071600, 1346073913440, 11734199738820, 98420246759688
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Dickau, Stamp Folding, 2010.
- Hunter Hogan, mapFolding: A computational framework for enumerating distinct folding patterns of rectangular maps, GitHub repository, (2025).
- W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80.
- Eric Weisstein's World of Mathematics, Map Folding.
- Index entries for sequences obtained by enumerating foldings
Original entry on oeis.org
1, 3, 8, 25, 72, 231, 696, 2268, 7030, 23155, 73188, 242957, 778946, 2601345, 8430992, 28289598, 92470194, 311472985, 1025114180, 3463982109, 11465054942, 38846071490, 129180293184, 438697998100, 1464716085664, 4984101484479, 16698145444260, 56918978668875
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Showing 1-10 of 10 results.
Comments