cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A000136 Number of ways of folding a strip of n labeled stamps.

Original entry on oeis.org

1, 2, 6, 16, 50, 144, 462, 1392, 4536, 14060, 46310, 146376, 485914, 1557892, 5202690, 16861984, 56579196, 184940388, 622945970, 2050228360, 6927964218, 22930109884, 77692142980, 258360586368, 877395996200, 2929432171328, 9968202968958, 33396290888520, 113837957337750
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.

Crossrefs

Formula

a(n) = 2*n * A000560(n-1) for n >= 3.
a(n) = n * A000682(n). - Andrew Howroyd, Dec 06 2015

A000560 Number of ways of folding a strip of n labeled stamps.

Original entry on oeis.org

1, 2, 5, 12, 33, 87, 252, 703, 2105, 6099, 18689, 55639, 173423, 526937, 1664094, 5137233, 16393315, 51255709, 164951529, 521138861, 1688959630, 5382512216, 17547919924, 56335234064, 184596351277, 596362337295, 1962723402375
Offset: 2

Views

Author

Keywords

References

  • A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.

Crossrefs

Programs

Formula

a(n) = (1/2)*A000682(n+1) for n >= 2.
a(n) = A000136(n+1)/(2*n+2) for n >= 2. - Jean-François Alcover, Sep 06 2019 (from formula in A000136)

Extensions

Computed to n = 45 by Iwan Jensen - see link in A000682.

A060206 Number of rotationally symmetric closed meanders of length 4n+2.

Original entry on oeis.org

1, 2, 10, 66, 504, 4210, 37378, 346846, 3328188, 32786630, 329903058, 3377919260, 35095839848, 369192702554, 3925446804750, 42126805350798, 455792943581400, 4967158911871358, 54480174340453578, 600994488311709056, 6664356253639465480
Offset: 0

Views

Author

N. J. A. Sloane, Apr 10 2001

Keywords

Comments

Closed meanders of other lengths do not have rotational symmetry. - Andrew Howroyd, Nov 24 2015
See A077460 for additional information on the symmetries of closed meanders.

Crossrefs

Meander sequences in Bacher's paper: A060066, A060089, A060111, A060148, A060149, A060174, A060198.

Programs

Formula

a(n) = A000682(2n + 1). - Andrew Howroyd, Nov 24 2015

Extensions

Name edited by Andrew Howroyd, Nov 24 2015
a(7)-a(20) from Andrew Howroyd, Nov 24 2015

A001011 Number of ways to fold a strip of n blank stamps.

Original entry on oeis.org

1, 1, 2, 5, 14, 38, 120, 353, 1148, 3527, 11622, 36627, 121622, 389560, 1301140, 4215748, 14146335, 46235800, 155741571, 512559195, 1732007938, 5732533570, 19423092113, 64590165281, 219349187968, 732358098471, 2492051377341, 8349072895553, 28459491475593
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, Mathematical Games, Sci. Amer. Vol. 209 (No. 3, Mar. 1963), p. 262.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence - see entry 576, Fig. 17, and the front cover).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = (A001010(n) + A000136(n)) / 4 for n >= 2. - Andrew Howroyd, Dec 07 2015

Extensions

a(17) and a(20) corrected by Sean A. Irvine, Mar 17 2013

A259689 Irregular triangle read by rows: T(n,k) is the number of degree-n permutations without overlaps which furnish k new permutations without overlaps upon the addition of an (n+1)st element, 2 <= k <= 1 + floor(n/2).

Original entry on oeis.org

1, 2, 2, 2, 6, 4, 10, 10, 4, 32, 26, 8, 68, 64, 34, 8, 220, 186, 82, 16, 528, 488, 276, 98, 16, 1724, 1484, 744, 226, 32, 4460, 4086, 2382, 980, 258, 32, 14664, 12752, 6822, 2498, 578, 64, 39908, 36384, 21616, 9576, 3088, 642, 64, 131944, 115508, 64264, 26040, 7552, 1410, 128
Offset: 2

Views

Author

N. J. A. Sloane, Jul 04 2015

Keywords

Comments

See Sade for precise definition.
From Roger Ford, Dec 07 2018: (Start)
T(n,k) is the number of semi-meanders with n top arches, k top arch groupings and a rainbow of bottom arches.
Example: /\ /\
n=4 k=3 //\\ /\ /\, /\ /\ //\\ T(4,3) = 2
.
/\ /\
//\\ //\\
n=4 k=2 ///\\\ /\, /\ ///\\\ T(4,2) = 2. (End)
Stéphane Legendre's solutions for folding a strip of stamps with leaf 1 on top have the same numeric sequences and total solutions as Albert Sade's permutations without overlaps. Stéphane Legendre's "Illustration of initial terms" link in A000682 models the values for Albert Sade's array. - Roger Ford, Dec 24 2018

Examples

			Triangle begins, n >= 2, 2 <= k <= 1 + floor(n/2):
     1;
     2;
     2,    2;
     6,    4;
    10,   10,    4;
    32,   26,    8;
    68,   64,   34,   8;
   220,  186,   82,  16;
   528,  488,  276,  98,  16;
  1724, 1484,  744, 226,  32;
  4460, 4086, 2382, 980, 258, 32;
  ...
		

References

  • A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.

Crossrefs

Row sums give A000682.
Column k=2 is A260785.

Formula

Sum_{k>=2} k*T(n,k) = A000682(n + 1). - Andrew Howroyd, Dec 07 2018
T(n, floor(n/2)) = 2^floor((n-1)/2)*(n-4)+2. - Roger Ford, Dec 04 2018
For n>2, T(n, floor((n+2)/2)) = 2^(floor((n-1)/2)). - Roger Ford, Aug 18 2023

Extensions

Terms a(22) and beyond from Andrew Howroyd, Dec 05 2018

A046726 Triangle of numbers of semi-meanders of order n with k components.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 11, 16, 10, 1, 5, 17, 37, 48, 24, 1, 6, 24, 66, 126, 140, 66, 1, 7, 32, 104, 254, 430, 428, 174, 1, 8, 41, 152, 438, 956, 1454, 1308, 504, 1, 9, 51, 211, 690, 1796, 3584, 4976, 4072, 1406, 1, 10, 62, 282, 1023, 3028, 7238, 13256, 16880, 12796, 4210
Offset: 1

Views

Author

Keywords

Comments

Rows are in order of decreasing number of components. Diagonals give number of semi-meanders with k components. - Andrew Howroyd, Nov 27 2015

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   4;
  1, 4, 11,  16,  10;
  1, 5, 17,  37,  48,  24;
  1, 6, 24,  66, 126, 140,   66;
  1, 7, 32, 104, 254, 430,  428,  174;
  1, 8, 41, 152, 438, 956, 1454, 1308, 504;
  ...
		

Crossrefs

Diagonals include A000682, A046721, A046722, A046723, A046724, A046725. Columns include A000027, A046691. Row sums are in A000108 (Catalan numbers).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 05 2000
T(12,k)-T(40,k) from Andrew Howroyd, Dec 07 2015

A077460 Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times.

Original entry on oeis.org

1, 1, 1, 3, 12, 70, 464, 3482, 27779, 233556, 2038484, 18357672, 169599492, 1601270562, 15401735750, 150547249932, 1492451793728, 14980801247673, 152047178479946, 1558569469867824, 16119428039548246
Offset: 0

Views

Author

N. J. A. Sloane and Jon Wild, Dec 03 2002

Keywords

Comments

Nonisomorphic closed meanders, where two closed meanders are considered equivalent if one can be obtained from the other by reflections in an East-West or North-South mirror (a group of order 4).
Symmetries are possible by reflection in a North-South mirror, or by rotation through 180 degrees when n is odd.(see illustration). - Andrew Howroyd, Nov 24 2015

Examples

			A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points.
For n = 2, 4, 6, 8 the solutions are as follows:
n=2: 1 2
n=4: 1 2 3 4
n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6
n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8, 1 2 7 4 5 6 3 8, 1 4 3 2 7 6 5 8
		

Crossrefs

The total number of closed meanders with 2n crossings is given in A005315. Cf. A000682, A005316, A060206, A077055, A078104, A078105, A078591.

Programs

Formula

From Andrew Howroyd, Nov 24 2015: (Start)
a(2n+1) = (A005315(2n+1) + A005316(2n+1) + A060206(n)) / 4.
a(2n) = (A005315(2n) + 2 * A005316(2n)) / 4. (End)

Extensions

a(10)-a(20) from Andrew Howroyd, Nov 24 2015

A301620 a(n) is the total number of top arches with exactly one covering arch for semi-meanders with n top arches.

Original entry on oeis.org

0, 0, 2, 4, 18, 42, 156, 398, 1398, 3778, 12982, 36522, 124290, 360182, 1220440, 3618090, 12237698, 36938158, 124880222, 382471606, 1293363816, 4009185912, 13565790984, 42478788432, 143851766298, 454339269482, 1539997455570, 4900091676662, 16624834778474, 53240459608298
Offset: 1

Views

Author

Roger Ford, Mar 24 2018

Keywords

Comments

For n>2, a(n-2) is the number of ways to fold a strip of n stamps with leaf 1 on top and the n leaf not adjacent to the n-1 leaf. Example n = 6, a(6-2) = 4: 125436, 126345, 154362, 163452. - Roger Ford, Mar 29 2019
For n>2, a(n-2) is the number of ways to fold a strip of n stamps with leaf 1 on top and leaf 2 not in the second position and not in the n-th position. Example, for n = 6, a(6-2) = 4: 143265, 156234, 165234, 143256. - Roger Ford, Mar 12 2021

Examples

			For n = 4, a(4) = 4.  + + are underneath the starting and ending of each arch with exactly one covering arch.
          /\                  /\
         //\\         /\     //\\       /\
      /\///\\\,  /\/\//\\,  ///\\\/\,  //\\/\/\ .
         +  +         ++     +  +       ++
		

Crossrefs

Programs

Formula

a(n) = A000682(n+2) - 2*A000682(n+1).
a(n) = Sum_{k=3..floor((n+3)/2)} (A259689(n+1,k)*(k-2)). - Roger Ford, Dec 10 2018
a(n) = 2*A259702(n+2). - Roger Ford, Dec 24 2018

A001010 Number of symmetric foldings of a strip of n stamps.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 18, 20, 56, 48, 178, 132, 574, 348, 1870, 1008, 6144, 2812, 20314, 8420, 67534, 24396, 225472, 74756, 755672, 222556, 2540406, 693692, 8564622, 2107748, 28941258, 6656376, 98011464, 20548932, 332523306, 65573260, 1130110294, 205022836, 3846372944, 659806116, 13109737832, 2084555444, 44735866296, 6755838520
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]];
    A007822 = Cases[Import["https://oeis.org/A007822/b007822.txt", "Table"], {, }][[All, 2]];
    a[n_] := Which[n == 1, 1, EvenQ[n], 2*A000682[[n/2 + 1]], OddQ[n], 2*A007822[[(n - 1)/2 + 1]]];
    Array[a, 52] (* Jean-François Alcover, Sep 03 2019, updated Jul 13 2022 *)

Formula

a(1) = 1, a(2n-1) = 2*A007822(n), a(2n) = 2*A000682(n+1). - Sean A. Irvine, Mar 18 2013; corrected by Hunter Hogan, Aug 08 2025

A223093 Number of foldings of n labeled stamps in which leaf 1 is inwards and leaf n outwards (or leaf 1 outwards and leaf n inwards).

Original entry on oeis.org

0, 0, 2, 4, 16, 38, 132, 342, 1144, 3134, 10370, 29526, 97458, 285458, 942920, 2822310, 9341008, 28440970, 94358558, 291294678, 968853072, 3025232480, 10086634316, 31797822936, 106265437078, 337731551446, 1131117792978, 3620119437762, 12148796744234, 39118879440938
Offset: 1

Views

Author

N. J. A. Sloane, Mar 29 2013

Keywords

Comments

Subset of foldings of n labeled stamps (A000136). - Stéphane Legendre, Apr 09 2013

Programs

Formula

a(n) = A000682(n+1) - A077014(n). - Andrew Howroyd, Dec 06 2015
A217310(n) = 2*a(n) if n is odd and A217310(n) = a(n) if n is even. - Stéphane Legendre, Jan 09 2014

Extensions

Name clarified by Stéphane Legendre, Apr 09 2013
More terms from Stéphane Legendre, Apr 09 2013
Showing 1-10 of 35 results. Next