A259702
Row sums of A259701 except first column.
Original entry on oeis.org
0, 0, 0, 1, 2, 9, 21, 78, 199, 699, 1889, 6491, 18261, 62145, 180091, 610220, 1809045, 6118849, 18469079, 62440111, 191235803, 646681908, 2004592956, 6782895492, 21239394216, 71925883149, 227169634741, 769998727785, 2450045838331, 8312417389237, 26620229804149
Offset: 2
Cf.
A301620 (essentially twice this sequence).
A259703
Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 2, 2, 1, 12, 5, 4, 2, 1, 33, 13, 12, 4, 3, 1, 87, 35, 30, 12, 6, 3, 1, 252, 98, 90, 32, 21, 6, 4, 1, 703, 278, 243, 94, 54, 21, 8, 4, 1, 2105, 812, 745, 270, 175, 57, 32, 8, 5, 1, 6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1
Offset: 2
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 2, 2, 1;
12, 5, 4, 2, 1;
33, 13, 12, 4, 3, 1;
87, 35, 30, 12, 6, 3, 1;
252, 98, 90, 32, 21, 6, 4, 1;
703, 278, 243, 94, 54, 21, 8, 4, 1;
2105, 812, 745, 270, 175, 57, 32, 8, 5, 1;
6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1;
...
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949
-
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
Showing 1-2 of 2 results.
Comments