cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000569 Number of graphical partitions of 2n.

Original entry on oeis.org

1, 2, 5, 9, 17, 31, 54, 90, 151, 244, 387, 607, 933, 1420, 2136, 3173, 4657, 6799, 9803, 14048, 19956, 28179, 39467, 54996, 76104, 104802, 143481, 195485, 264941, 357635, 480408, 642723, 856398, 1136715, 1503172, 1980785
Offset: 1

Views

Author

Keywords

Comments

A partition of n is a sequence p_1, ..., p_k for some k with p_1 >= p_2 >= ... >= p_k and p_1+...+p_k=n. A partition is graphical if it is the degree sequence of a simple graph (this requires that n be even). Some authors set a(0)=1 by convention.

Examples

			a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 17 graphical partitions:
  (11)  (211)   (222)     (2222)      (3322)
        (1111)  (2211)    (3221)      (22222)
                (3111)    (22211)     (32221)
                (21111)   (32111)     (33211)
                (111111)  (41111)     (42211)
                          (221111)    (222211)
                          (311111)    (322111)
                          (2111111)   (331111)
                          (11111111)  (421111)
                                      (511111)
                                      (2221111)
                                      (3211111)
                                      (4111111)
                                      (22111111)
                                      (31111111)
                                      (211111111)
                                      (1111111111)
(End)
		

Crossrefs

Programs

  • Mathematica
    << MathWorld`Graphs`
    Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
    (* second program *)
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)