cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000605 Number of points of norm <= n in cubic lattice.

Original entry on oeis.org

1, 7, 33, 123, 257, 515, 925, 1419, 2109, 3071, 4169, 5575, 7153, 9171, 11513, 14147, 17077, 20479, 24405, 28671, 33401, 38911, 44473, 50883, 57777, 65267, 73525, 82519, 91965, 101943, 113081, 124487, 137065, 150555, 164517, 179579, 195269, 212095
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A302997.
Cf. A117609 (number of lattice points inside the ball x^2+y^2+z^2 <= n).

Programs

  • C
    int A000605(int i)
    {
        const int ring = i*i;
        int result = 0;
        for (int a = -i; a <= i; a++)
            for (int b = -i; b <= i; b++)
                for (int c = -i; c <= i; c++)
                    if ( ring >= a*a+b*b+c*c )  result++;
        return result;
    } /* Oskar Wieland, Apr 08 2013 */
    
  • Mathematica
    Table[Sum[SquaresR[3, k], {k, 0, n^2}], {n, 0, 37}]
  • PARI
    N=66;  q='q+O('q^(N^2));
    t=Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^3/(1-q));  /* A117609 */
    vector(sqrtint(#t),n,t[(n-1)^2+1])
    /* Joerg Arndt, Apr 08 2013 */

Formula

a(n) = A117609(n^2). - R. J. Mathar, Apr 21 2010
a(n) = [x^(n^2)] theta_3(x)^3/(1 - x), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 14 2018

Extensions

More terms from David W. Wilson, May 22 2000