A000615 Threshold functions of exactly n variables.
2, 2, 8, 72, 1536, 86080, 14487040, 8274797440, 17494930604032
Offset: 0
References
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 4.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0142 and N0747).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
- Alastair D. King, Comments on A002080 and related sequences based on threshold functions, Mar 17 2023.
- S. Muroga, I. Toda and M. Kondo, Majority decision functions of up to six variables, Math. Comp., 16 (1962), 459-472.
- S. Muroga, I. Toda and M. Kondo, Majority decision functions of up to six variables, Math. Comp., 16 (1962), 459-472. [Annotated partially scanned copy]
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
- Index entries for sequences related to Boolean functions
Crossrefs
Cf. A000609.
Formula
A000609(n) = Sum_{k=0..n} a(k)*binomial(n,k). - Alastair D. King, Mar 17 2023.
Extensions
Entry revised by N. J. A. Sloane, Jun 11 2012