A000631 Number of ethylene derivatives with n carbon atoms.
1, 1, 3, 5, 13, 27, 66, 153, 377, 914, 2281, 5690, 14397, 36564, 93650, 240916, 623338, 1619346, 4224993, 11062046, 29062341, 76581151, 202365823, 536113477, 1423665699, 3788843391, 10103901486, 26995498151, 72253682560, 193706542776
Offset: 2
Keywords
References
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..500
- Washington Bomfim, Illustration of initial terms
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-686.
- H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy)
- H. R. Henze and C. M. Blair, The number of structural isomers of the more important types of aliphatic compounds, J. Amer. Chem. Soc., 56 (1) (1934), 157-157.
- C.-W. Lam, A Mathematical Relationship between the Number of Isomers of Alkenes and Alkynes: A Result Established from the Enumeration of Isomers of Alkenes from Alky Biradicals, J. Math. Chem., 23, 421 (1998).
- R. J. Mathar, Illustration for graphs up to 6 carbons
- R. C. Read, Some recent results in chemical enumeration, Lect. Notes Math. 303 (1972), 243-259.
- R. C. Read, Some recent results in chemical enumeration, Preprint, circa 1972. (Annotated scanned copy)
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 28.
- N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
- Index entries for sequences related to rooted trees
Programs
-
PARI
\\ Here G(n) is A000598 as g.f., h is A000642. seq(n)={my(g=G(n), h=(subst(g, x, x^2) + g^2)/2); Vec(subst(h, x, x^2) + h^2)/2} \\ Andrew Howroyd, Dec 01 2020
Formula
a(n) = b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b(n/2)(b(n/2) + 1)/2 when n is even or b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b((n-1)/2)b((n + 1)/2) when n is odd, where b(n) = A000642(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
a(n) = Sum_{k=1..(n-1)/2}( f(k) * f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2 + f(n/2) ) / 2 where f(n) = A000642(n+1). - Washington Bomfim, Nov 29 2020
G.f.: (g(x^2) + g(x)^2)/2 where x*g(x) is the g.f. of A000642. - Andrew Howroyd, Dec 01 2020
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
Comments