A000652 Invertible Boolean functions of n variables.
1, 1, 6, 924, 81738720000, 256963707943061374889193111552000, 30978254928194376001814792318154658399138184007229852126545533479881553257431040000000
Offset: 0
References
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 154, problem 12.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- Index entries for sequences related to Boolean functions
Formula
A000652: n->2^(-2*n)*( (2^n)! + (2^n-1)^2 * ( (2^(n-1))! )*2^(2^(n-1)));
Extensions
More terms from Vladeta Jovovic, Feb 23 2000
Comments