cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000654 Invertible Boolean functions of n variables.

Original entry on oeis.org

1, 2, 52, 142090700, 17844701940501123640681816160, 59757436204078657410908164193971330396709572693816353610758085074676243846093824
Offset: 1

Views

Author

Keywords

Comments

Equivalence classes of invertible maps from {0,1}^n to {0,1}^n, under action of permutation and complementation of variables on domain and range. - Sean A. Irvine, Mar 16 2011

References

  • M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
  • C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    cyclify =
      Function[{x},
       Sort@Tally[Length /@ PermutationCycles[x + 1, Identity]]];
    totalweight =
      Function[{c}, Product[(x[[1]]^x[[2]]) ( x[[2]]!), {x, c}]];
    perms = Function[{n},
       Flatten[Table[
         FromDigits[Permute[IntegerDigits[BitXor[x, a], 2, n], sigma],
          2], {sigma, Permutations[Range[n]]}, {a, 0, 2^n - 1}, {x, 0,
          2^n - 1}], 1]];
    countit =
      Function[{n},
       Sum[totalweight[x[[1]]] (x[[2]]^2), {x,
          Tally[cyclify /@ perms[n]]}]/((2^n) (n!))^2];
    Table[countit[n], {n, 1, 5}] (*  Adam P. Goucher, Feb 12 2021 *)

Extensions

More terms from Sean A. Irvine, Mar 15 2011