cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000671 Number of boron trees with n nodes, i.e. n-node rooted trees with degree <= 3 at root and out-degree <= 2 elsewhere.

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 14, 29, 60, 127, 275, 598, 1320, 2936, 6584, 14858, 33744, 76999, 176557, 406456, 939241, 2177573, 5064150, 11809632, 27610937, 64705623, 151966597, 357623905, 843176524, 1991439229, 4711115672, 11162025770, 26484061667, 62923251955
Offset: 0

Views

Author

Keywords

Comments

The subsequence of primes begins: 2, 7, 29, 127, 176557, 2177573, 151966597.

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 450).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N := 40: t1 := G001190/x: G000671 := series(x*(1/3!)*(t1^3+3*subs(x=x^2,t1)*t1+2*subs(x=x^3,t1)), x, N); A000671 := n->coeff(G000671,x,n);
    CI2 := proc(f) (1/2)*(f^2+subs(x=x^2,f)); end; CI3 := proc(f) (1/6)*(f^3+3*subs(x=x^2,f)*f+2*subs(x=x^3,f)); end;
    N := 40: B0 := series(1 + x,x,N): G000671 := series(x*(CI3(B0) + CI3(G036656) + CI3(G036657) + CI2(B0)*(G036656 + G036657) + CI2(G036656)*(G036657 + B0) + CI2(G036657)*(B0 + G036656) + B0*G036656*G036657),x,N); A036658 := n->coeff(G036658,x,n);
  • Mathematica
    terms = 32; (* B = g.f. for A001190 *) B[] = 0; Do[B[x] = x + (1/2)*(B[x]^2 + B[x^2]) + O[x]^terms // Normal, terms];
    f[x_] = B[x]/x;
    A[x_] = x*(1/3!)*(f[x]^3 + 3*f[x^2]*f[x] + 2*f[x^3]) + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, May 29 2012, from first g.f., updated Jan 10 2018 *)

Formula

G.f.: A(x) = x*(1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)), where f = G001190(x)/x, G001190 = g.f. for A001190.
a(n) = A001190(n) + A036657(n) + A036658(n).
Another g.f.: let B0(x) = 1+x, G036656(x) = g.f. for A036656, G036657(x) = g.f. for A036657.
Then g.f.: x*(cycle_index(S3, B0)+cycle_index(S3, G036656)+cycle_index(S3, G036657)+cycle_index(S2, B0)*(G036656+G036657)+cycle_index(S2, G036656)*(G036657+B0)+cycle_index(S2, G036657)*(B0+G036656)+B0*G036656*G036657), where cycle_index(Sk, f) means apply the cycle index for the symmetric group S_k to f(x).
E.g., cycle_index(S2, f) = (1/2!)*(f^2+subs(x=x^2, f), cycle_index(S3, f) = (1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)).