cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318617 a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 231, and 312.

Original entry on oeis.org

1, 1, 3, 13, 73, 503, 4107, 38773, 415589, 4986715, 66238503, 965102769, 15306905817, 262567910999, 4844199561787, 95660129298709, 2013392566243565, 44997370759528091, 1064283567185090791, 26560710262784693097, 697529916604465424553
Offset: 0

Views

Author

Kassie Archer, Aug 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, k-1] (r-1)! a[n-k] a[k-r], {k, 1, n}, {r, 1, k}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    seq(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, sum(r=1, k, binomial(n-1,k-1)*(r-1)!*v[n-k+1]*v[k-r+1]))); v} \\ Andrew Howroyd, Aug 30 2018

Formula

a(n) = Sum_{k=1..n} Sum_{r=1..k} binomial(n-1,k-1)*(r-1)!*a(n-k)*a(k-r) for n>0, a(0)=1.

A318618 a(n) is the number of rooted forests on n nodes that avoid the patterns 321, 2143, and 3142.

Original entry on oeis.org

1, 1, 3, 15, 102, 870, 8910, 106470, 1454040, 22339800, 381364200, 7161323400, 146701724400, 3255661609200, 77808668137200, 1992415575150000, 54420258228336000, 1579320261543024000, 48529229906613456000, 1574046971727454224000, 53741325186841612320000
Offset: 0

Views

Author

Kassie Archer, Aug 30 2018

Keywords

Comments

a(n) is the number of rooted labeled forests on n nodes so that along any path from the root to a vertex, there is at most one descent.

Crossrefs

Programs

  • Mathematica
    a[n_] := n! + Sum[n! 2^-j Binomial[n-k-1, j-1] Binomial[k, j], {k, 1, n}, {j, 1, Min[k, n-k]}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    a(n) = {n! + sum(k=1, n, sum(j=1, min(k, n-k), n!/(2^j)*binomial(n-k-1,j-1)*binomial(k,j)))} \\ Andrew Howroyd, Aug 31 2018

Formula

a(n) = n! + Sum_{k=1..n} Sum_{j=1..min(k, n-k)} (n!/2^j)*binomial(n-k-1, j-1)*binomial(k, j).
From Peter J. Taylor, Jul 03 2025: (Start)
E.g.f.: -2*(x-1)/(x^2-4*x+2).
a(n) = n! * Sum_{j=0..n/2} binomial(n, 2*j)/2^j
a(n) = 2*n*a(n-1) - n*(n-1)/2*a(n-2).
a(n) ~ (1+sqrt(1/2))^n*n!/2. (End)

A363272 Irregular triangle read by rows: T(n,k) = number of unlabeled binary rooted trees with n leaves, where some child tree has k leaves, 1 <= k <= n/2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 6, 3, 2, 11, 6, 3, 3, 23, 11, 6, 6, 46, 23, 11, 12, 6, 98, 46, 23, 22, 18, 207, 98, 46, 46, 33, 21, 451, 207, 98, 92, 69, 66, 983, 451, 207, 196, 138, 138, 66, 2179, 983, 451, 414, 294, 276, 253, 4850, 2179, 983, 902, 621, 588, 506, 276
Offset: 2

Views

Author

Harry Richman, May 24 2023

Keywords

Examples

			Table begins:
 1;
 1;
 1,  1;
 2,  1;
 3,  2,  1;
 6,  3,  2;
11,  6,  3,  3;
23, 11,  6,  6;
46, 23, 11, 12,  6;
98, 46, 23, 22, 18;
...
		

Crossrefs

Row sums are A001190.
First column k=1 is T(n,1) = A001190(n-1).

Programs

  • PARI
    T(n)={my(A=vector(n), R=vector(n)); A[1]=1; R[1]=[]; for(i=2, n, R[i] = vector(i\2, j, if(2*jAndrew Howroyd, Jan 01 2024

Formula

T(n,k) = A001190(k) * A001190(n-k) if k < n/2; otherwise
T(2k,k) = A001190(k) * (A001190(k) + 1) / 2 = A000217(A001190(n)).
Sum_{k >= 1} T(n,k) = A001190(n).
Sum_{i >= k} T(n,i) = A363273(n,k).
Sum_{i <= n-1, i+j >= n} T(i,j) = A000671(n-2).

Extensions

Terms a(32) and beyond from Andrew Howroyd, Jan 01 2024

A363273 Irregular triangle read by rows: T(n,k) = number of unlabeled binary rooted trees with n leaves, where both children have at least k leaves, 1 <= k <= n/2.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 6, 3, 1, 11, 5, 2, 23, 12, 6, 3, 46, 23, 12, 6, 98, 52, 29, 18, 6, 207, 109, 63, 40, 18, 451, 244, 146, 100, 54, 21, 983, 532, 325, 227, 135, 66, 2179, 1196, 745, 538, 342, 204, 66, 4850, 2671, 1688, 1237, 823, 529, 253, 10905, 6055, 3876, 2893, 1991, 1370, 782, 276
Offset: 2

Views

Author

Harry Richman, May 24 2023

Keywords

Examples

			Table begins:
  1;
  1;
  2,   1;
  3,   1;
  6,   3,  1;
 11,   5,  2;
 23,  12,  6,  3;
 46,  23, 12,  6;
 98,  52, 29, 18,  6;
207, 109, 63, 40, 18;
...
		

Crossrefs

First column k = 1 is A001190.
Sums along upwards diagonals are A000671.
Cf. A363272.

Programs

  • PARI
    T(n)={my(A=vector(n), R=vector(n)); A[1]=1; R[1]=[]; for(i=2, n, my(t=vector(i\2, j, if(2*jAndrew Howroyd, Jan 01 2024

Formula

T(n,k) = Sum_{j >= k} A363272(n,j).
Sum_{k >= 1} T(n-k, k) = A000671(n-2).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Jan 01 2024

A036661 Number of n-node rooted labeled trees with deg <= 4 at root and outdegree <= 2 elsewhere.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 32, 66, 142, 306, 672, 1483, 3316, 7446, 16859, 38353, 87735, 201510, 464801, 1075744, 2498053, 5817576, 13585231, 31801732, 74615404, 175433624, 413281276, 975355639, 2305763635, 5459480822, 12945857671
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: A(x) = x*cycle_index(S4, f), where f = A001190(x)/x.
Showing 1-5 of 5 results.