A318617 a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 231, and 312.
1, 1, 3, 13, 73, 503, 4107, 38773, 415589, 4986715, 66238503, 965102769, 15306905817, 262567910999, 4844199561787, 95660129298709, 2013392566243565, 44997370759528091, 1064283567185090791, 26560710262784693097, 697529916604465424553
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- K. Anders and K. Archer, Rooted forests that avoid sets of permutations, arXiv:1607.03046 [math.CO], 2017.
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, k-1] (r-1)! a[n-k] a[k-r], {k, 1, n}, {r, 1, k}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
-
PARI
seq(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, sum(r=1, k, binomial(n-1,k-1)*(r-1)!*v[n-k+1]*v[k-r+1]))); v} \\ Andrew Howroyd, Aug 30 2018
Formula
a(n) = Sum_{k=1..n} Sum_{r=1..k} binomial(n-1,k-1)*(r-1)!*a(n-k)*a(k-r) for n>0, a(0)=1.
Comments