A000673 Number of bicentered 3-valent (or boron, or binary) trees with n nodes.
0, 0, 1, 0, 1, 1, 2, 2, 6, 8, 18, 30, 67, 127, 275, 551, 1192, 2507, 5475, 11820, 26007, 57077, 126686, 281625, 630660, 1416116, 3195784, 7232624, 16430563, 37429146, 85528079, 195940960, 450074270, 1036226173, 2391193488, 5529420585
Offset: 0
References
- A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Nicolas Broutin and Philippe Flajolet, The distribution of height and diameter in random non-plane binary trees, Random Struct. Algorithms 41, No. 2, 215-252 (2012).
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
- Index entries for sequences related to trees
Programs
-
Mathematica
n = 50; (* algorithm from Rains and Sloane *) S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)