A000677 Number of bicentered trees with n nodes.
0, 0, 1, 0, 1, 1, 3, 4, 11, 20, 51, 108, 267, 619, 1541, 3762, 9497, 23907, 61216, 157211, 407919, 1063398, 2792026, 7365532, 19535887, 52037837, 139213244, 373820978, 1007420841, 2723783122, 7387129661, 20091790330, 54793762295, 149808274055, 410553630946
Offset: 0
Examples
G.f. = x^2 + x^4 + x^5 + 3*x^6 + 4*x^7 + 11*x^8 + 20*x^9 + 51*x^10 + ... - _Michael Somos_, Aug 20 2018
References
- N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
- A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 438).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Geoffrey Critzer, Table of n, a(n) for n = 0..200 (replacing the first version from N. J. A. Sloane)
- Jean-François Alcover, Mathematica program
- A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees)., J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- N. J. A. Sloane, Maple program
- Eric Weisstein's World of Mathematics, Bicentered Tree.
- Index entries for sequences related to trees
Programs
-
Maple
# See link for Maple program.
-
Mathematica
(* See link. *)
Comments