cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000692 An approximation to population of x^2 + y^2 <= 2^n.

Original entry on oeis.org

1, 3, 4, 5, 9, 15, 27, 50, 92, 171, 322, 610, 1161, 2220, 4260, 8201, 15828, 30622, 59362, 115287, 224260, 436871, 852161, 1664196, 3253531, 6366973, 12471056, 24447507, 47962236, 94161474, 184983976, 363632192, 715220838, 1407510311
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064533.
Other population sequences for x^2 + y^2: A000050, A000690, A000691.

Formula

a(n) = (b*2^n / sqrt(n*log(2))) * (1 + c/(n*log(2))) where b=0.764223654... is the Landau-Ramanujan constant (A064533) and c=0.5819486593... is the second-order Landau-Ramanujan constant (A227158) given by c = (1/2) * (1-log(Pi*e^gamma/(2*L))) - (1/4) * D(1) where D(s) = (d/ds)(log(Product_{p prime == 3 (mod 4)} 1/(1-p^(-2*s)))) and L is the Lemniscate constant (A064853) [see (12) in Shanks]. - Sean A. Irvine, Feb 25 2011

Extensions

More terms from Sean A. Irvine, Feb 24 2011
Name clarified by Seth A. Troisi, May 23 2022