cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000705 n-th superior highly composite number A002201(n) is product of first n terms of this sequence.

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, 3, 5, 17, 19, 2, 23, 7, 29, 3, 31, 2, 37, 41, 43, 47, 5, 53, 59, 2, 11, 61, 3, 67, 71, 73, 79, 13, 83, 89, 2, 97, 101, 103, 107, 7, 109, 113, 17, 127, 131, 137, 139, 3, 5, 149, 151, 19, 2, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
Offset: 1

Views

Author

Keywords

Comments

The Mathematica program uses the fact that the ratio of consecutive superior highly composite numbers is a prime, which was proved by Ramanujan. Ramanujan computed the first 50 terms of this sequence. Related sequences are A004490 and A073751, having to do with colossally abundant numbers.

References

  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 115.
  • S. Ramanujan, Ramanujan's Papers, pp. 147-9, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pFactor[f_List] := Module[{p = f[[1]], k = f[[2]]}, N[Log[(k + 2)/(k + 1)]/Log[p]]]; maxN = 100; f = {{2, 1}, {3, 0}}; primes = 1; lst = {2}; x = Table[pFactor[f[[i]]], {i, primes + 1}]; For[n = 2, n <= maxN, n++, i = Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i > primes, primes++; AppendTo[f, {Prime[i + 1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]] = pFactor[f[[i]]]]; lst (* T. D. Noe, Nov 01 2002 *)

Extensions

Edited by T. D. Noe, Nov 01 2002