A317251 a(n) is the number of ways to paint the 2^n cells of dimension n-1 that bound a regular convex n-orthoplex polytope using exactly 2^n colors where n is the dimension of Euclidean space.
2, 6, 1680, 108972864000, 137047310902965380295426048000000, 5507245320567889066989296412116383715402149139520190633628554443368693760000000000000
Offset: 1
Keywords
Links
- Frank M Jackson, Table of n, a(n) for n = 1..8
- Wikipedia, Cross-polytope
Programs
-
Mathematica
a[n_]:=(2^n)!/(2^(n-1)*n!); Array[a,10]
Formula
a(n) = (2^n)!/(2^(n-1)*n!) = (2^n)!/A002866(n).
a(n) = 2 * A000723(n). - Alois P. Heinz, Aug 15 2018
Comments