A000724 Invertible Boolean functions of n variables.
1, 3, 196, 3406687200, 2141364232858913975435172249600, 43025354066936633335853878219659247776604712057098163541301459387254457761792000000
Offset: 1
Keywords
References
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- Index entries for sequences related to Boolean functions
Programs
-
Mathematica
Table[((2^n)! + (2^n - 1) (2^(n - 1))! 2^(2^(n - 1)) * (n! * Sum[ (2^(n - 2 k) - 1)/((n - 2 k)!*k!), {k, 0, Floor[(n - 1)/2]}]))/(n! 2^(2 n)), {n, 6}] (* Michael De Vlieger, Aug 20 2017 *)
Formula
a(n) = ((2^n)! + (2^n-1) * (2^(n-1))! * 2^(2^(n-1)) * b(n)) / (n! * 2^(2*n)) where b(n) = n! * Sum_{k=0..floor((n-1)/2)} (2^(n-2*k)-1) / ((n - 2*k)! * k!). - Sean A. Irvine, Aug 20 2017
Extensions
More terms from Sean A. Irvine, Mar 15 2011
Comments