cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000744 Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,...

Original entry on oeis.org

1, 2, 5, 14, 42, 144, 563, 2526, 12877, 73778, 469616, 3288428, 25121097, 207902202, 1852961189, 17694468210, 180234349762, 1950592724756, 22352145975707, 270366543452702, 3442413745494957, 46021681757269830
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 144*x^5 + 563*x^6 + 2526*x^7 + ...
		

Crossrefs

Programs

  • Haskell
    a000744 n = sum $ zipWith (*) (a109449_row n) $ tail a000045_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Maple
    read(transforms);
    with(combinat):
    F:=fibonacci;
    [seq(F(n), n=1..50)];
    BOUS2(%);
  • Mathematica
    s[k_] := SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, k}] k!;
    b[n_, k_] := Binomial[n, k] s[n - k];
    a[n_] := Sum[b[n, k] Fibonacci[k + 1], {k, 0, n}];
    Array[a, 22, 0] (* Jean-François Alcover, Jun 01 2019 *)
  • Python
    from itertools import accumulate, islice
    def A000744_gen(): # generator of terms
        blist, a, b = tuple(), 1, 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
            a, b = b, a+b
    A000744_list = list(islice(A000744_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000045(k+1). - Reinhard Zumkeller, Nov 03 2013
E.g.f.: (1/10)*(sec(x)+tan(x))*((5^(1/2)+1)*exp(1/2*x*(5^(1/2)+1))+(5^(1/2)-1)*exp(1/2*x*(-5^(1/2)+1)))*5^(1/2). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (sqrt(5) - 1 + (1+sqrt(5)) * exp(sqrt(5)*Pi/2)) * 2^(n+1) / (sqrt(5) * exp((sqrt(5)-1)*Pi/4) * Pi^(n+1)). - Vaclav Kotesovec, Jun 12 2015

Extensions

Entry revised by N. J. A. Sloane, Mar 16 2011