A000744 Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,...
1, 2, 5, 14, 42, 144, 563, 2526, 12877, 73778, 469616, 3288428, 25121097, 207902202, 1852961189, 17694468210, 180234349762, 1950592724756, 22352145975707, 270366543452702, 3442413745494957, 46021681757269830
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 144*x^5 + 563*x^6 + 2526*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000744 n = sum $ zipWith (*) (a109449_row n) $ tail a000045_list -- Reinhard Zumkeller, Nov 03 2013
-
Maple
read(transforms); with(combinat): F:=fibonacci; [seq(F(n), n=1..50)]; BOUS2(%);
-
Mathematica
s[k_] := SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, k}] k!; b[n_, k_] := Binomial[n, k] s[n - k]; a[n_] := Sum[b[n, k] Fibonacci[k + 1], {k, 0, n}]; Array[a, 22, 0] (* Jean-François Alcover, Jun 01 2019 *)
-
Python
from itertools import accumulate, islice def A000744_gen(): # generator of terms blist, a, b = tuple(), 1, 1 while True: yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1] a, b = b, a+b A000744_list = list(islice(A000744_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
E.g.f.: (1/10)*(sec(x)+tan(x))*((5^(1/2)+1)*exp(1/2*x*(5^(1/2)+1))+(5^(1/2)-1)*exp(1/2*x*(-5^(1/2)+1)))*5^(1/2). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (sqrt(5) - 1 + (1+sqrt(5)) * exp(sqrt(5)*Pi/2)) * 2^(n+1) / (sqrt(5) * exp((sqrt(5)-1)*Pi/4) * Pi^(n+1)). - Vaclav Kotesovec, Jun 12 2015
Extensions
Entry revised by N. J. A. Sloane, Mar 16 2011