cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000745 Boustrophedon transform of squares.

Original entry on oeis.org

1, 5, 18, 57, 180, 617, 2400, 10717, 54544, 312353, 1988104, 13921501, 106350816, 880162337, 7844596536, 74910367309, 763030711936, 8257927397569, 94628877364936, 1144609672707741, 14573622985067744, 194834987492011649, 2728787718495477144, 39955604972310966797
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000745 n = sum $ zipWith (*) (a109449_row n) $ tail a000290_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    CoefficientList[Series[E^(x)*(x^2+3*x+1)*(1+Sin[x])/Cos[x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 12 2015 *)
    t[n_, 0] := (n + 1)^2; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    def A000745_gen(): # generator of terms
        blist, c = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
            c += 2*i+1
    A000745_list = list(islice(A000745_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) ~ n! * (6 + Pi + 4/Pi) * exp(Pi/2) * 2^n / Pi^n. - Vaclav Kotesovec, Jun 12 2015
E.g.f.: exp(x)*(x^2 + 3*x + 1)*(1+sin(x))/cos(x). - Vaclav Kotesovec, Jun 12 2015