cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000753 Boustrophedon transform of Catalan numbers.

Original entry on oeis.org

1, 2, 5, 16, 59, 243, 1101, 5461, 29619, 175641, 1137741, 8031838, 61569345, 510230087, 4549650423, 43452408496, 442620720531, 4790322653809, 54893121512453, 663974736739232, 8453986695437957, 113021461431438475
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000753 n = sum $ zipWith (*) (a109449_row n) a000108_list
    -- Reinhard Zumkeller, Nov 05 2013
    
  • Mathematica
    CoefficientList[Series[E^(2*x) * (BesselI[0,2*x] - BesselI[1,2*x]) * (Sec[x] + Tan[x]),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Oct 30 2014 after Sergei N. Gladkovskii *)
  • Python
    from itertools import accumulate, count, islice
    def A000753_gen(): # generator of terms
        blist, c = tuple(), 1
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
            c = c*(4*i+2)//(i+2)
    A000753_list = list(islice(A000753_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000108(k). - Reinhard Zumkeller, Nov 05 2013
E.g.f.: (sec(x) + tan(x))*exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * exp(Pi) * (BesselI(0, Pi) - BesselI(1, Pi)) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Oct 30 2014