A000754 Boustrophedon transform of odd numbers.
1, 4, 12, 33, 96, 317, 1218, 5425, 27608, 158129, 1006574, 7048657, 53847420, 445643681, 3971876930, 37928628529, 386337833232, 4181155148673, 47912508680086, 579538956964241, 7378919177090244, 98648882783190305
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Crossrefs
Cf. A005408.
Programs
-
Haskell
a000754 n = sum $ zipWith (*) (a109449_row n) [1, 3 ..] -- Reinhard Zumkeller, Nov 02 2013
-
Mathematica
CoefficientList[Series[(Sec[x]+Tan[x])*E^x*(2*x+1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2014 after Sergei N. Gladkovskii *) t[n_, 0] := 2n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import accumulate, count, islice def A000754_gen(): # generator of terms blist = tuple() for i in count(1,2): yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1] A000754_list = list(islice(A000754_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
From Reinhard Zumkeller, Nov 02 2013: (Start)
a(n) = Sum_{k=0..n} A109449(n,k)*(2*k + 1). (End)
E.g.f.: (sec(x) + tan(x))*exp(x)*(2*x + 1). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (Pi+1) * exp(Pi/2) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Oct 30 2014