A000837 Number of partitions of n into relatively prime parts. Also aperiodic partitions.
1, 1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 63, 100, 119, 167, 209, 296, 347, 489, 582, 775, 945, 1254, 1481, 1951, 2334, 2980, 3580, 4564, 5386, 6841, 8118, 10085, 12012, 14862, 17526, 21636, 25524, 31082, 36694, 44582, 52255, 63260, 74170, 88931, 104302
Offset: 0
Examples
Of the 11 partitions of 6, we must exclude 6, 4+2, 3+3 and 2+2+2, so a(6) = 11 - 4 = 7. For n=6, 2+2+1+1 is periodic because it can be written 2*(2+1), similarly 1+1+1+1+1+1, 3+3 and 2+2+2. The a(6) = 7 partitions into relatively prime parts are (51), (411), (321), (3111), (2211), (21111), (111111). The a(6) = 7 aperiodic partitions are (6), (51), (42), (411), (321), (3111), (21111). - _Gus Wiseman_, Dec 19 2017
References
- H. W. Gould, personal communication.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Mohamed El Bachraoui, On the Parity of p(n,3) and p_psi(n,3), Contributions to Discrete Mathematics, Vol. 5.2 (2010).
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
- Mircea Merca and Maxie D. Schmidt, Generating Special Arithmetic Functions by Lambert Series Factorizations, arXiv:1706.00393 [math.NT], 2017. See Remark 3.4.
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Mathematica
p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; g[n_, j_] := Apply[GCD, Part[p[n], j]]; h[n_] := Table[g[n, j], {j, 1, l[n]}]; Join[{1}, Table[Count[h[n], 1], {n, 1, 20}]] (* Clark Kimberling, Mar 09 2012 *) a[0] = 1; a[n_] := Sum[ MoebiusMu[n/d] * PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 03 2013 *)
-
PARI
N=66; x='x+O('x^N); gf=2+sum(n=1,N, (1/eta(x^n))*moebius(n)); Vec(gf) \\ Joerg Arndt, May 11 2013
-
PARI
print1("1, "); for(n=1,46,my(s=0);forpart(X=n,s+=gcd(X)==1);print1(s,", ")) \\ Hugo Pfoertner, Mar 27 2020
-
Python
from sympy import npartitions, mobius, divisors def a(n): return 1 if n==0 else sum(mobius(n//d)*npartitions(d) for d in divisors(n)) # Indranil Ghosh, Apr 26 2017
Formula
Möbius transform of A000041. - Christian G. Bower, Jun 11 2000
Product_{n>0} 1/(1-q^n) = 1 + Sum_{n>0} a(n)*q^n/(1-q^n). - Mamuka Jibladze, Nov 14 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
a(n) <= p(n) <= a(n+1), where p(n) is the number of partitions of n (A000041). - Franklin T. Adams-Watters, Jul 24 2020
Extensions
Corrected and extended by David W. Wilson, Aug 15 1996
Additional name from Christian G. Bower, Jun 11 2000
Comments