cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000837 Number of partitions of n into relatively prime parts. Also aperiodic partitions.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 63, 100, 119, 167, 209, 296, 347, 489, 582, 775, 945, 1254, 1481, 1951, 2334, 2980, 3580, 4564, 5386, 6841, 8118, 10085, 12012, 14862, 17526, 21636, 25524, 31082, 36694, 44582, 52255, 63260, 74170, 88931, 104302
Offset: 0

Views

Author

Keywords

Comments

Starting (1, 1, 2, 3, 6, 7, 14, ...), = row sums of triangle A137585. - Gary W. Adamson, Jan 27 2008
Triangle A168532 has aerated variants of this sequence in each column starting with offset 1, row sums = A000041. - Gary W. Adamson, Nov 28 2009
A partition is aperiodic iff its multiplicities are relatively prime, i.e., its Heinz number (A215366) is not a perfect power (A007916). - Gus Wiseman, Dec 19 2017
This sequence is monotonically increasing; each partition of n-1 can have a part of size 1 added to it to get a partition counted in a(n). - Franklin T. Adams-Watters, Jul 24 2020

Examples

			Of the 11 partitions of 6, we must exclude 6, 4+2, 3+3 and 2+2+2, so a(6) = 11 - 4 = 7.
For n=6, 2+2+1+1 is periodic because it can be written 2*(2+1), similarly 1+1+1+1+1+1, 3+3 and 2+2+2.
The a(6) = 7 partitions into relatively prime parts are (51), (411), (321), (3111), (2211), (21111), (111111). The a(6) = 7 aperiodic partitions are (6), (51), (42), (411), (321), (3111), (21111). - _Gus Wiseman_, Dec 19 2017
		

References

  • H. W. Gould, personal communication.

Crossrefs

Programs

  • Mathematica
    p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; g[n_, j_] := Apply[GCD, Part[p[n], j]]; h[n_] := Table[g[n, j], {j, 1, l[n]}]; Join[{1}, Table[Count[h[n], 1], {n, 1, 20}]]
    (* Clark Kimberling, Mar 09 2012 *)
    a[0] = 1; a[n_] := Sum[ MoebiusMu[n/d] * PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    N=66; x='x+O('x^N); gf=2+sum(n=1,N, (1/eta(x^n))*moebius(n)); Vec(gf) \\ Joerg Arndt, May 11 2013
    
  • PARI
    print1("1, "); for(n=1,46,my(s=0);forpart(X=n,s+=gcd(X)==1);print1(s,", ")) \\ Hugo Pfoertner, Mar 27 2020
    
  • Python
    from sympy import npartitions, mobius, divisors
    def a(n): return 1 if n==0 else sum(mobius(n//d)*npartitions(d) for d in divisors(n)) # Indranil Ghosh, Apr 26 2017

Formula

Möbius transform of A000041. - Christian G. Bower, Jun 11 2000
Product_{n>0} 1/(1-q^n) = 1 + Sum_{n>0} a(n)*q^n/(1-q^n). - Mamuka Jibladze, Nov 14 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
a(n) <= p(n) <= a(n+1), where p(n) is the number of partitions of n (A000041). - Franklin T. Adams-Watters, Jul 24 2020

Extensions

Corrected and extended by David W. Wilson, Aug 15 1996
Additional name from Christian G. Bower, Jun 11 2000