cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001033 Numbers n such that the sum of the squares of n consecutive positive odd numbers x^2 + (x+2)^2 + ... + (x+2n-2)^2 = k^2 for some integer k. The least values of x and k for each n are in A056131 and A056132, respectively.

Original entry on oeis.org

1, 16, 25, 33, 49, 52, 64, 73, 97, 100, 121, 148, 169, 177, 193, 196, 241, 244, 249, 256, 276, 289, 292, 297, 313, 337, 361, 388, 393, 400, 409, 457, 481, 484, 528, 529, 537, 577, 592, 625, 628, 649, 673, 676, 708, 724, 753, 772, 784, 793, 832, 841, 852, 897, 913, 961, 964, 976, 996
Offset: 1

Views

Author

Keywords

Comments

Papers by Sollfrey, Hunter and Makowski correct and extend the work of Alfred. However, they do not consider n = 97, 241, 244, 276, 528 and 832, which are in this sequence. I have verified that there are no other n < 1000. - T. D. Noe, Oct 24 2007
A134419 shows how A001032 and this sequence are related. - T. D. Noe, Nov 04 2007
The number 4 is not in this sequence due to the requirement that the odd integers be positive, otherwise 6^2 = (-1)^2 + 1^2 + 3^2 + 5^2.

Examples

			a(1) = 1 from 1^2.
a(2) = 16 from 27^2 + 29^2 + ... + 55^2 + 57^2 = 172^2.
a(4) = 33 from 91^2 + 93^2 + ... + 153^2 + 155^2 = 715^2.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    r[1] = {True, {1, 1}}; r[n_] := (rn = Reduce[x > 0 && k > 0 && Sum[(x + 2*j)^2, {j, 0, n - 1}] == k^2, {x, k}, Integers]; srn = Simplify[(rn /. C[1] -> 0) || (rn /. C[1] -> 1) || (rn /. C[1] -> 2)]; rnOdd = Which[rn === False, False, srn[[0]] === And, srn, True, Select[srn, OddQ[x /. ToRules[#1]] & ]]; If[ rnOdd === False, {False, {0, 0}}, {True, {x, k} /. Flatten[{ToRules[rnOdd]}]}]); A001033 = Reap[Do[rn = r[n]; {x0, k0} = rn[[2]]; If[rn[[1]] && OddQ[x0], Print[{n, x0, k0}]; Sow[n]], {n, 1, 1000}]][[2, 1]] (* Jean-François Alcover, Mar 14 2012 *)

Formula

We must solve m*(3*x^2 + 6*m*x - 6*x + 4*m^2 - 6*m + 2)/3 = k^2 in integers (x, m, k). - N. J. A. Sloane
For a given n, we must determine whether the generalized Pell equation 4n*y^2 + 4y*n^2 + n(4n^2-1)/3 = k^2 has any integer solutions with y >= 0. Note that x = 2y+1 will be the first odd number being squared. If there are solutions then n is in this sequence. - T. D. Noe, Oct 24 2007

Extensions

More terms from Robert G. Wilson v
Corrected and extended by T. D. Noe, Oct 24 2007
1024 was missing from b-file. - Christopher E. Thompson, Feb 05 2016