A001116 Maximal kissing number of an n-dimensional lattice.
0, 2, 6, 12, 24, 40, 72, 126, 240, 272
Offset: 0
Examples
In three dimensions, each sphere in the face-centered cubic lattice D_3 touches 12 others, and the kissing number in any other three-dimensional lattice is less than 12.
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993. p. 15.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Henry Cohn and Anqi Li, Improved kissing numbers in seventeen through twenty-one dimensions, arXiv:2411.04916 [math.MG], 2024.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 31-62.
- J. Leech and N. J. A. Sloane, New sphere packings in dimensions 9-15, Bull. Amer. Math. Soc., 76 (1970), 1006-1010.
- G. Nebe and N. J. A. Sloane, Table of highest kissing numbers known
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Seven Staggering Sequences.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 21.
- John Tangen, Letter to N. J. A. Sloane, Apr 27 1978
- G. L. Watson, The number of minimum points of a positive quadratic form, Dissertationes Math., 84 (1971), 42 pp.
- Eric Weisstein's World of Mathematics, Kissing Number.
Comments