cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001116 Maximal kissing number of an n-dimensional lattice.

Original entry on oeis.org

0, 2, 6, 12, 24, 40, 72, 126, 240, 272
Offset: 0

Views

Author

Keywords

Comments

a(9) = 272 was determined by Watson (1971). a(10) is probably 336.
Lower bounds for the next 4 terms are 336, 438, 756, 918.
From Natalia L. Skirrow, Jun 04 2023: (Start)
Trivial upper bounds given by A257479 are 553, 869, 1356, 2066.
a(n) coincides with A257479(n) when a lattice achieves the non-lattice-constrained kissing number, for a(0)=0, a(1)=2, a(2)=6 (A_2), a(3)=12 (A_3), a(4)=24 (D_4), a(8)=240 (E_8) and a(24)=196560 (Leech). A002336(n) agrees with a(n) for all n<=9 (and equality is unknown thereafter), and A028923(n)=a(n) iff n<=6. (End)

Examples

			In three dimensions, each sphere in the face-centered cubic lattice D_3 touches 12 others, and the kissing number in any other three-dimensional lattice is less than 12.
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993. p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

A002336(n),A028923(n) <= a(n) <= A257479(n).