cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001124 Primes with 5 as smallest primitive root.

Original entry on oeis.org

23, 47, 73, 97, 103, 157, 167, 193, 263, 277, 307, 383, 397, 433, 503, 577, 647, 673, 683, 727, 743, 863, 887, 937, 967, 983, 1033, 1093, 1103, 1153, 1163, 1223, 1367, 1487, 1543, 1583, 1607, 1777, 1823, 1847, 1933, 1993, 2003, 2017, 2063, 2087, 2113, 2203, 2207
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 57.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001122, A001123, A001125, etc.

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`; Prime[ Select[ Range[200], PrimitiveRoot[ Prime[ # ] ] == 5 & ] ]
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@300, PrimitiveRoot@# == 5 &] (* Robert G. Wilson v, May 11 2001 *)
    Select[Prime[Range[350]],PrimitiveRoot[#]==5&] (* The PrimitiveRoot function is now part of Mathematica's core, so no add-in needs to be loaded before calling it *) (* Harvey P. Dale, Dec 06 2014 *)
  • Python
    from itertools import islice
    from sympy import nextprime, primitive_root
    def A001124_gen(): # generator of terms
        p = 5
        while (p:=nextprime(p)):
            if primitive_root(p)==5:
                yield p
    A001124_list = list(islice(A001124_gen(),30)) # Chai Wah Wu, Feb 13 2023

Extensions

More terms from Robert G. Wilson v, May 10 2001