cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001134 Primes p such that the multiplicative order of 2 modulo p is (p-1)/4.

Original entry on oeis.org

113, 281, 353, 577, 593, 617, 1033, 1049, 1097, 1153, 1193, 1201, 1481, 1601, 1889, 2129, 2273, 2393, 2473, 3049, 3089, 3137, 3217, 3313, 3529, 3673, 3833, 4001, 4217, 4289, 4457, 4801, 4817, 4937, 5233, 5393, 5881, 6121, 6521, 6569, 6761, 6793, 6841, 7129, 7481, 7577, 7793, 7817, 7841, 8209
Offset: 1

Views

Author

Keywords

Comments

The multiplicative order of x modulo y is the smallest positive number m such that x^m is congruent to 1 mod y.

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(6761) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,4) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    Reap[For[p = 2, p <= 6761, p = NextPrime[p], If[ MultiplicativeOrder[2, p] == (p-1)/4, Sow[p]]]][[2, 1]] (* Jean-François Alcover, May 17 2013 *)
  • PARI
    forprime(p=3,10^4,if(znorder(Mod(2,p))==(p-1)/4,print1(p,", "))); \\ Joerg Arndt, May 17 2013
    
  • PARI
    oddres(n)=n>>valuation(n, 2)
    cyc(d)=my(k=1, t=1,y=(d-5)/(2*3)+1); while((t=oddres(t+d))>1 && k<=y, k++); k
    forstep(n=1, 241537, [16,8], if(cyc(n)==n>>3,print1(n", "))) ; \\ Charles R Greathouse IV, May 18 2013

Extensions

More terms and better definition from Don Reble, Mar 11 2006