cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001136 Primes p such that the multiplicative order of 2 modulo p is (p-1)/6.

Original entry on oeis.org

31, 223, 433, 439, 457, 727, 919, 1327, 1399, 1423, 1471, 1831, 1999, 2017, 2287, 2383, 2671, 2767, 2791, 2953, 3271, 3343, 3457, 3463, 3607, 3631, 3823, 3889, 4129, 4423, 4519, 4567, 4663, 4729, 4759, 5167, 5449, 5503, 5953, 6007, 6079, 6151, 6217, 6271, 6673, 6961, 6967, 7321
Offset: 1

Views

Author

Keywords

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001133.

Programs

  • Magma
    [ p: p in PrimesUpTo(6079) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,6) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p - 1)/6, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015, adapted from PARI *)
  • PARI
    forprime(p=3,10^4,if(znorder(Mod(2,p))==(p-1)/6,print1(p,", "))); \\ Joerg Arndt, May 17 2013

Extensions

More terms and better definition from Don Reble, Mar 11 2006