A001143 Describe the previous term! (method A - initial term is 6).
6, 16, 1116, 3116, 132116, 1113122116, 311311222116, 13211321322116, 1113122113121113222116, 31131122211311123113322116, 132113213221133112132123222116
Offset: 1
Examples
The term after 3116 is obtained by saying "one 3, two 1's, one 6", which gives 132116.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
Links
- T. D. Noe, Table of n, a(n) for n = 1..20
- J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
- S. R. Finch, Conway's Constant. [Broken link]
- S. R. Finch, Conway's Constant. [From the Wayback Machine]
Programs
-
Mathematica
RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 6 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 11} ] (* Zerinvary Lajos, Mar 21 2007 *)
Comments