A001145 Describe the previous term! (method A - initial term is 7).
7, 17, 1117, 3117, 132117, 1113122117, 311311222117, 13211321322117, 1113122113121113222117, 31131122211311123113322117, 132113213221133112132123222117
Offset: 1
Examples
E.g. the term after 3117 is obtained by saying "one 3, two 1's, one 7", which gives 132117.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
Links
- T. D. Noe, Table of n, a(n) for n=1..20
- J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
- S. R. Finch, Conway's Constant [Broken link]
- S. R. Finch, Conway's Constant [From the Wayback Machine]
Programs
-
Mathematica
RunLengthEncode[x_List] := (Through[{First, Length}[ #1]] &) /@ Split[x]; LookAndSay[n_, d_: 1] := NestList[Flatten[Reverse /@ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 7][[n]]; Table[FromDigits[F[n]], {n, 1, 11}] (* Zerinvary Lajos, Jul 08 2009 *)
Comments