A001151 Describe the previous term! (method A - initial term is 8).
8, 18, 1118, 3118, 132118, 1113122118, 311311222118, 13211321322118, 1113122113121113222118, 31131122211311123113322118, 132113213221133112132123222118, 11131221131211132221232112111312111213322118, 31131122211311123113321112131221123113111231121123222118
Offset: 1
Examples
E.g. the term after 3118 is obtained by saying "one 3, two 1's, one 8", which gives 132118.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
Links
- T. D. Noe, Table of n, a(n) for n=1..20
- J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
- S. R. Finch, Conway's Constant [Broken link]
- S. R. Finch, Conway's Constant [From the Wayback Machine]
Programs
-
Maple
freq := proc(i,L) local f,p ; if i > nops(L) or i < 1 then return 0 ; end if; f := 1 ; for p from i to 2 by -1 do if op(p,L) = op(p-1,L) then f := f+1 ; else return f; end if; end do: f ; end proc: read("transforms"): rle := proc(n) local inL,i,outL,f ; inL := convert(n,base,10) ; i := nops(inL) ; outL := [] ; while i>0 do f := freq(i,inL) ; if f = 0 then break; else outL := [op(outL),f,op(i,inL)] ; i := i-f ; end if; end do: digcatL(outL) ; end proc: A001151 := proc(n) option remember ; if n = 1 then 8; else rle(procname(n-1)) ; end if; end proc: seq(A001151(n),n=1..10) ; # R. J. Mathar, Feb 11 2021
-
Mathematica
RunLengthEncode[x_List] := (Through[{First, Length}[ #1]] &) /@ Split[x]; LookAndSay[n_, d_: 1] := NestList[Flatten[Reverse /@ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 8][[n]]; Table[FromDigits[F[n]], {n, 1, 11}] (* Zerinvary Lajos, Jul 08 2009 *)
Comments