A001182 Number of cells of square lattice of edge 1/n inside quadrant of unit circle centered at 0.
0, 1, 4, 8, 15, 22, 30, 41, 54, 69, 83, 98, 119, 139, 162, 183, 208, 234, 263, 294, 322, 357, 390, 424, 465, 504, 545, 585, 628, 675, 719, 770, 819, 872, 928, 977, 1036, 1090, 1155, 1216, 1274, 1339, 1404, 1475, 1545, 1610, 1683, 1755, 1832, 1911, 1992, 2072
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Sum[Floor@ Sqrt[n^2 - k^2], {k, n - 1}], {n, 52}] (* Michael De Vlieger, Jan 30 2017 *)
-
Python
from math import isqrt def A001182(n): return sum(isqrt(k*((n<<1)-k)) for k in range(1,n)) # Chai Wah Wu, Jul 18 2024
Formula
a(n) = Sum_{k=1..n-1} floor(sqrt(n^2-k^2)). - Horst Kraemer (horst.kraemer(AT)epost.de) Apr 07 2004
a(n) = [x^(n^2)] (theta_3(x) - 1)^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
Extensions
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 19 2000