cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008969 Triangle of differences of reciprocals of unity.

Original entry on oeis.org

1, 1, 3, 1, 11, 7, 1, 50, 85, 15, 1, 274, 1660, 575, 31, 1, 1764, 48076, 46760, 3661, 63, 1, 13068, 1942416, 6998824, 1217776, 22631, 127, 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255, 1, 1026576, 7245893376, 673781602752, 1413470290176, 117550462624, 747497920, 833375, 511
Offset: 1

Views

Author

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,      3;
  1,     11,         7;
  1,     50,        85,         15;
  1,    274,      1660,        575,        31;
  1,   1764,     48076,      46760,      3661,       63;
  1,  13068,   1942416,    6998824,   1217776,    22631,    127;
  1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.

Crossrefs

Columns include A000254, A000424, A001236, A001237, A001238. Right-hand columns include A000225, A001240, A001241, A001242.

Programs

  • Maple
    T:= (n,k)-> `if`(k<=n, (n-k+2)!^k *
         add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):
    seq(seq(T(n,k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

A384561 One fourth of the number of permutations of [n] with |p(i+1) - p(i)| >= 2, for i = 1..(n-1) and n appears at position i = 1 or i = n.

Original entry on oeis.org

1, 6, 39, 284, 2337, 21474, 218179, 2430216, 29459301, 386182478, 5444570631, 82157021556, 1321282006249, 22562446559034, 407722012334667, 7773697259015264, 155956589714240109, 3284208113313605286, 72434065593967762831, 1669777527837108720588, 40157785493048522566641
Offset: 5

Views

Author

Wolfdieter Lang, Jun 04 2025

Keywords

Comments

The number of such permutations of [n] is 1 for n = 1 (the p(i) condition is not needed), and 0 for n = 2, 3 and 4, hence a(1) = 1/4 and a(n) = 0 for n = 2, 3 and 4.
The number of permutations of [n] with |p(i+1) - p(i)| >= 2, for i = 1..(n-1), for n >= n is given by A002464(n), for n >= 0. See also A001266(n) = A002464(n)/2, for n >= 2. These permutations are also called king permutations, e.g., in A382644.

Examples

			n = 5: the 4 permutations are 2 4 1 3 5, 3 1 4 2 5 and their reversals 5 3 1 4 2,  5 2 4 1 3.
a(5) = 1 = A382644(4)/2 = (A001236(5) - A242522(6))/2 = (7 - 5)/2, and A382644(5)/2 - A242522(6) = 6 - 5 = 1
a(6) = a(5) + A242522(6) = 1 + 5 = 6.
		

Crossrefs

Formula

a(n) = A382644(n-1)/2, for n >= 5.
a(n) = (A001266(n) - A242522(n+1))/2, for n >= 5.
a(n) = A382644(n)/2 - A242522(n+1), for n >= 5.
a(n) = a(n-1) + A242522(n), for n >= 6, with a(5) = 1.
Showing 1-2 of 2 results.