A001244 Eulerian numbers (Euler's triangle: column k=8 of A008292, column k=7 of A173018).
1, 502, 47840, 2203488, 66318474, 1505621508, 27971176092, 447538817472, 6382798925475, 83137223185370, 1006709967915228, 11485644635009424, 124748182104463860, 1300365805079109480, 13093713503185076040
Offset: 8
References
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." ยง6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 2601.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 8..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (120, -6930, 256564, -6843837, 140161164, -2293167668, 30793317984, -346027498674, 3301174490432, -27034426023228, 191677191769368, -1184495927428914, 6413285791562760, -30547549870770240, 128399094121475760, -477325107218885805, 1571764443755152680, -4588173158058601250, 11875425392771515860, -27240699344951953809, 55318442559624109580, -99273350219483495580, 157041371328829338576, -218253110396224153888, 265336916554318663296, -280638192440433919872, 256449901319079809536, -200704456428999204096, 133025721255740648448, -73584771640934648832, 33313567375875428352, -12012672014150270976, 3315383509586411520, -657169361790566400, 83234996748288000, -5056584744960000).
Crossrefs
Programs
-
Magma
A001244:= func< n | EulerianNumber(n,7) >; [A001244(n): n in [8..40]]; // G. C. Greubel, Dec 31 2024
-
Mathematica
k = 8; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 15}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
PARI
A001244(n)=8^(n+8-1)+sum(i=1,8-1,(-1)^i/i!*(8-i)^(n+8-1)*prod(j=1,i,n+8+1-j))
-
Python
from sage.combinat.combinat import eulerian_number print([eulerian_number(n,7) for n in range(8,41)]) # G. C. Greubel, Dec 31 2024
Formula
a(n) = 8^(n+8-1) + Sum_{i=1..8-1} ((-1)^i/i!)*(8-i)^(n+8-1) * Product_{j=1..i} (n+8+1 - j). - Randall L Rathbun, Jan 23 2002
a(n) = k^n + Sum_{j=1..k-1} (-1)^j*binomial(n+1,j)*(k-j)^n, with k = 8, for n >= 8. - G. C. Greubel, Dec 31 2024
Extensions
More terms from Christian G. Bower, May 12 2000
Comments