cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A151880 Triangle: R*(n,k) (n>=2, k from 2 to n-1 or to 2 if n = 2), where R*(n,k) = number of trees with n nodes and k unlabeled end-nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 3, 9, 12, 1, 4, 18, 52, 60, 1, 5, 30, 136, 360, 360
Offset: 0

Views

Author

N. J. A. Sloane, Jul 21 2009

Keywords

Comments

All nodes are labeled except for the end-nodes.

Examples

			Triangle (in fact the columns in the original have been reversed and the triangle transposed):
(n=2) 1
(n=3) 1
(n=4) 1 1
(n=5) 1 2 3
(n=6) 1 3 9 12
(n=7) 1 4 18 52 60
(n=8) 1 5 30 136 360 360
		

Crossrefs

See A213262 for a better version with more terms and a program.
Row sums give A001258.

Formula

There is an explicit formula in terms of Stirling numbers of the second kind.

A213262 Triangle read by rows: R*(n,k) (n>=2, k from 2 to n-1 or to 2 if n = 2), where R*(n,k) = number of trees with n nodes and k unlabeled end-nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 12, 9, 3, 1, 60, 52, 18, 4, 1, 360, 360, 136, 30, 5, 1, 2520, 2880, 1205, 280, 45, 6, 1, 20160, 26040, 12090, 3025, 500, 63, 7, 1, 181440, 262080, 134610, 36546, 6375, 812, 84, 8, 1, 1814400, 2903040, 1641360, 484260, 90126, 11935, 1232, 108, 9, 1, 19958400, 35078400, 21712320, 6951840, 1386217, 193326, 20510, 1776, 135, 10, 1
Offset: 2

Views

Author

N. J. A. Sloane, Jun 07 2012

Keywords

Comments

All nodes are labeled except for the end-nodes.

Examples

			Triangle begins:
[1],
[1],
[1, 1],
[3, 2, 1],
[12, 9, 3, 1],
[60, 52, 18, 4, 1],
[360, 360, 136, 30, 5, 1],
[2520, 2880, 1205, 280, 45, 6, 1],
[20160, 26040, 12090, 3025, 500, 63, 7, 1],
[181440, 262080, 134610, 36546, 6375, 812, 84, 8, 1],
[1814400, 2903040, 1641360, 484260, 90126, 11935, 1232, 108, 9, 1],
...
		

Crossrefs

Row sums give A001258. This is an improved version of A151880.

Programs

  • Maple
    # This is for n >= 3:
    with(combinat);
    R:=proc(n,k) # This is for A151880
    if n=1 then if k=1 then RETURN(1) else RETURN(0); fi
        elif (n=2 and k=2) then RETURN(1)
        elif (n=2 and k>2) then RETURN(0)
        else stirling2(n-2,n-k)*n!/k!;
        fi;
    end;
    Rstar:=proc(n,k)
    if k=2 then
         if n <=4 then RETURN(1); else RETURN((n-2)!/2); fi;
    else
       if k <= n-2 then add(binomial(n-i-1,k-i)*R(n-k,i), i=2..n-1);
       elif k=n-1 then 1;
       else 0;
       fi;
    fi;
    end;
    g:=n->[seq(Rstar(n,k),k=2..n-1)];
    [seq(g(n),n=3..16)];
  • Mathematica
    r[n_, k_] := Which[ n == 1, If[k == 1, Return[1], Return[0]], n == 2 && k == 2, Return[1], n == 2 && k > 2, Return[0], n > k > 0, StirlingS2[n-2, n-k]*n!/k!, True, 0]; rstar[n_, k_] := Which[ k == 2, If[ n <= 4 , Return[1], Return[(n-2)!/2]], k <= n-2, Sum[ Binomial[n-i-1, k-i]*r[n-k, i], {i, 2, n-1}] , k == n-1 , 1, True, 0]; g[n_] := Table[rstar[n, k], {k, 2, n-1}]; Join[{1}, Table[g[n], {n, 3, 13}] // Flatten] (* Jean-François Alcover, Oct 05 2012, translated from Maple *)
Showing 1-2 of 2 results.