cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001258 Number of labeled n-node trees with unlabeled end-points.

Original entry on oeis.org

1, 1, 2, 6, 25, 135, 892, 6937, 61886, 621956, 6946471, 85302935, 1141820808, 16540534553, 257745010762, 4298050731298, 76356627952069, 1439506369337319, 28699241994332940, 603229325513240569, 13330768181611378558, 308967866671489907656, 7493481669479297191451, 189793402599733802743015, 5010686896406348299630712
Offset: 2

Views

Author

N. J. A. Sloane. More terms from N. J. A. Sloane, Jun 07 2012

Keywords

References

  • J.W. Moon, Counting Labelled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970, Sec. 3.9.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A151880.

Programs

  • Maple
    # This gives the sequence but without the initial 1:
    with(combinat);
    R:=proc(n,k) # this gives A055314
    if n=1 then if k=1 then RETURN(1) else RETURN(0); fi
        elif (n=2 and k=2) then RETURN(1)
        elif (n=2 and k>2) then RETURN(0)
        else stirling2(n-2,n-k)*n!/k!;
        fi;
    end;
    Rstar:=proc(n,k) # this gives A213262
    if k=2 then
         if n <=4 then RETURN(1); else RETURN((n-2)!/2); fi;
    else
       if k <= n-2 then add(binomial(n-i-1,k-i)*R(n-k,i), i=2..n-1);
       elif k=n-1 then 1;
       else 0;
       fi;
    fi;
    end;
    [seq(add(Rstar(n,k),k=2..n-1),n=3..20)];
  • Mathematica
    r[n_, k_] := Which[n == 1, If[k == 1, Return[1], Return[0]], n == 2 && k == 2, Return[1], n == 2 && k > 2, Return[0], n > k > 0, StirlingS2[n-2, n-k]*n!/k!, True, 0]; rstar[n_, k_] := Which[k == 2, If[n <= 4, Return[1], Return[(n-2)!/2]], k <= n-2, Sum[Binomial[n-i-1, k-i]*r[n-k, i], {i, 2, n-1}], k == n-1, 1, True, 0]; Join[{1}, Table[Sum[rstar[n, k], {k, 2, n-1}], {n, 3, 26}]] (* Jean-François Alcover, Oct 08 2012, translated from Maple *)
    tStar[2] = 1;
    tStar[n_] :=
      Sum[(-1)^j Binomial[n - k, j] Binomial[n - 1 - j,
         k] (n - k - j)^(n - k - 2), {k, 2, n - 1}, {j, 0, n - k - 1}];
    Table[tStar[n], {n, 2, 20}] (* David Callan, Jul 18 2014, after Moon reference *)

A151880 Triangle: R*(n,k) (n>=2, k from 2 to n-1 or to 2 if n = 2), where R*(n,k) = number of trees with n nodes and k unlabeled end-nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 3, 9, 12, 1, 4, 18, 52, 60, 1, 5, 30, 136, 360, 360
Offset: 0

Views

Author

N. J. A. Sloane, Jul 21 2009

Keywords

Comments

All nodes are labeled except for the end-nodes.

Examples

			Triangle (in fact the columns in the original have been reversed and the triangle transposed):
(n=2) 1
(n=3) 1
(n=4) 1 1
(n=5) 1 2 3
(n=6) 1 3 9 12
(n=7) 1 4 18 52 60
(n=8) 1 5 30 136 360 360
		

Crossrefs

See A213262 for a better version with more terms and a program.
Row sums give A001258.

Formula

There is an explicit formula in terms of Stirling numbers of the second kind.
Showing 1-2 of 2 results.