cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001302 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25, 50 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 407, 428, 457, 478, 507, 540, 569, 602, 631, 664
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 25, and 50. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 55} ], x ]
    Array[Length@IntegerPartitions[#, All, {1, 2, 5, 10, 25, 50}]&, 100, 0] (* Giorgos Kalogeropoulos, Apr 24 2021 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50))+ O(x^100)) \\ Michel Marcus, Sep 05 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).
a(n) = Sum_{k=0..floor(n/2)} A001300(n-2*k). - Christian Krause, Apr 24 2021