cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001313 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 20, 50 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 20, and 50. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Cf. A001319.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50)), {x, 0, 50}], x]
    Table[Length[FrobeniusSolve[{1,2,5,10,20,50},n]],{n,0,60}] (* (very slow) Harvey P. Dale, Dec 25 2011 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50))+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)).

A339094 Number of (unordered) ways of making change for n US Dollars using the current US denominations of $1, $2, $5, $10, $20, $50 and $100 bills.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740, 793, 828, 881, 916
Offset: 0

Views

Author

Robert G. Wilson v, Nov 25 2020

Keywords

Comments

Not the same as A001313. First difference appears at A001313(100) being 4562, whereas a(100) is 4563; obviously one more than A001313(100).
Not the same as A057537.
Number of partitions of n into parts 1, 2, 5, 10, 20, 50 and 100.

Examples

			a(5) is 4 because 1+1+1+1+1 = 2+1+1+1 = 2+2+1 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ IntegerPartitions[n, All, {1, 2, 5, 10, 20, 50, 100}]; Array[f, 75, 0] (* or *)
    CoefficientList[ Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50) (1 - x^100)), {x, 0, 75}], x] (* or *)
    Table[ Length@ FrobeniusSolve[{1, 2, 5, 10, 20, 50, 100}, n], {n, 0, 75}] (* much slower *)
  • PARI
    coins(v[..])=my(x='x); prod(i=1, #v, 1/(1-x^v[i]))
    Vec(coins(1, 2, 5, 10, 20, 50, 100)+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)*(1-x^100)).
Showing 1-2 of 2 results.