A001365 Expansion of 1/(1-x)^2/(1-x^2)/(1-x^6)/(1-x^12)/(1-x^24)/(1-x^48)/(1-x^60).
1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 45, 54, 67, 80, 97, 114, 135, 156, 183, 210, 243, 276, 315, 354, 403, 452, 511, 570, 639, 708, 791, 874, 971, 1068, 1179, 1290, 1421, 1552, 1703, 1854, 2025, 2196, 2393, 2590
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 251
- Index entries for linear recurrences with constant coefficients, order 154.
Programs
-
Mathematica
CoefficientList[Series[1/(1-x)^2/(1-x^2)/(1-x^6)/(1-x^12)/(1-x^24)/(1-x^48)/(1-x^60),{x,0,1003}],x] (* Vincenzo Librandi, Feb 24 2012 *)
Formula
G.f.: 1/(1-x)^2/(1-x^2)/(1-x^6)/(1-x^12)/(1-x^24)/(1-x^48)/(1-x^60).