A001408 High temperature series for spin-1/2 Ising specific heat on 3-dimensional simple cubic lattice, divided by 3.
1, 11, 188, 2992, 51708, 930436, 17127356, 320726028, 6086177116, 116714440696, 2257460877244, 43974184178012, 861732730297212, 16973299816150504, 335797855252698940, 6669051330542560708, 132899989069230881308, 2656406833061149357920, 53239449964640093020476
Offset: 0
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. A. Baker, Further application of the Padé approximant method to the Ising and Heisenberg models, Phys. Rev. 129 (1963) 99-102.
- Steven R. Finch, Lenz-Ising Constants [broken link]
- Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
- A. J. Guttmann and I. G. Enting, The high-temperature specific heat exponent of the 3-dimensional Ising model, J. Phys. A 27 (1994) 8007-8010.
- G. S. Rushbrooke and J. Eve, High-temperature Ising partition function and related noncrossing polygons for the simple cubic lattice, J. Math. Physics 3 (1962) 185-189.
- Index entries for sequences related to specific heat
Crossrefs
Equals A002916/3.
Extensions
Corrections and updates from Steven Finch
Terms a(13) and beyond from Andrey Zabolotskiy, Feb 15 2022