A001425 Number of commutative groupoids with n elements.
1, 1, 4, 129, 43968, 254429900, 30468670170912, 91267244789189735259, 8048575431238519331999571800, 24051927835861852500932966021650993560, 2755731922430783367615449408031031255131879354330
Offset: 0
Keywords
References
- Satoh, S.; Yama, K.; and Tokizawa, M., Semigroups of order 8, Semigroup Forum 49 (1994), 7-29. [Background]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
Links
- Eric Postpischil Posting to sci.math newsgroup, May 21 1990
- N. J. A. Sloane, Overview of A001329, A001423-A001428, A258719, A258720.
- T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
- Index entries for sequences related to groupoids
Formula
a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (sum {d|i} (d*s_d))^(i*s_i^2/2) * (sum {d|i/2} (d*s_d))^s_i or {i != j} (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)
Extensions
More terms from Christian G. Bower Feb 15 1998 and May 15 1998. Formula Dec 03 2003.