cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A079196 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 1, 117, 43910, 254429575, 30468670168769, 91267244789189717968, 8048575431238519331999349995, 24051927835861852500932966021639447717, 2755731922430783367615449408031031255128360423993
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079197.
Cf. A001329, A001425, A001426, A079193, A079195 (labeled case), A079199.

Formula

A079193(n) + a(n) + A079199(n) + A001426(n) = A001329(n).
a(n) = A001425(n) - A001426(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(10) added by Andrew Howroyd, Jan 26 2022

A023813 a(n) = n^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 8, 729, 1048576, 30517578125, 21936950640377856, 459986536544739960976801, 324518553658426726783156020576256, 8727963568087712425891397479476727340041449, 10000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Comments

Determinant of n X n matrix M_(i,j) = binomial(n*i,j). - Benoit Cloitre, Sep 13 2003
Number of commutative binary operations on an n-set. Labeled commutative groupoids.

Crossrefs

Programs

Formula

a(n) = Product_{k=1..n} n^k. - José de Jesús Camacho Medina, Jul 12 2016
a(n) = n^A000217(n). - Alois P. Heinz, Aug 06 2018

Extensions

Better description from Amarnath Murthy, Dec 29 2001

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A258719 Number of self-dual noncommutative groupoids with n elements.

Original entry on oeis.org

0, 0, 9, 16192, 198862625, 42002510818752, 207278622607612079818, 29215384735442091573649485568, 137562588659577384442574662095693261747, 24724406349174154904254665510689036571978910174560
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2015

Keywords

Crossrefs

Formula

a(n) = A029850(n) - A001425(n). - Andrew Howroyd, May 06 2023

Extensions

a(5)-a(10) from Andrew Howroyd, May 06 2023

A029850 Number of self-converse groupoids.

Original entry on oeis.org

1, 1, 4, 138, 60160, 453292525, 72471180989664, 298545867396801815077, 37263960166680610905649057368, 161614516495439236943507628117344255307, 27480138271604938271870114918720067827110789528890
Offset: 0

Views

Author

Christian G. Bower, Jan 15 1998, Jun 15 1998, Dec 05 2003

Keywords

Crossrefs

a(n) = 2*A001424(n) - A001329(n). Cf. A001425.

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i*2} (d*s_d))^((i*s_i^2-s_i)/2) * (sum {d|i} (d*s_d))^s_i or {i=j == 0 mod 4} (sum {d|i} (d*s_d))^(i*s_i^2) or {i=j == 2 mod 4} (sum {d|i} (d*s_d))^(i*s_i^2-s_i) * (sum {d|i/2} (d*s_d))^(2*s_i) or {i != j} (sum {d|lcm(i, j, 2)} (d*s_d))^(2*i*j*s_i*s_j/lcm(2*i*j)).

Extensions

Formula corrected by Sean A. Irvine and Christian G. Bower, Jul 13 2012

A079183 Number of isomorphism classes of non-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

0, 6, 3201, 178937984, 2483527282664925, 14325590003288422852104768, 50976900301814583996024242298024434780, 155682086691137947272042494203068030678979503481450216
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079184.

Crossrefs

Formula

a(n) = A001329(n) - A001425(n).

Extensions

Edited and extended by Christian G. Bower, Dec 12 2003

A038021 Triangle: T(n,k), k<=n: commutative groupoids with n elements and k idempotents.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 38, 57, 27, 7, 13872, 18544, 9280, 2080, 192, 83360520, 104208775, 52110500, 13035000, 1632750, 82355
Offset: 0

Views

Author

Christian G. Bower, May 15 1998

Keywords

Crossrefs

A079185 Number of isomorphism classes of commutative closed binary operations (groupoids) on a set of order n, listed by class size.

Original entry on oeis.org

1, 0, 4, 1, 4, 8, 116, 0, 0, 0, 8, 0, 28, 504, 43428
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
First four rows: 1; 0,4; 1,4,8,116; 0,0,0,8,0,28,504,43428
A079176(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
The sum of each row n is given by A079177(n).

Crossrefs

Cf. A001425, A023183, A079184. a(n, A027423(n)) = A030255(n).

A030255 Number of nonisomorphic commutative groupoids with no symmetry.

Original entry on oeis.org

1, 1, 4, 116, 43428, 254197133
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = A079185(n, A027423(n)). Cf. A001425.
Showing 1-10 of 16 results. Next