cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A001426 Number of commutative semigroups of order n.

Original entry on oeis.org

1, 1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337
Offset: 0

Views

Author

Keywords

References

  • P. A. Grillet, Computing Finite Commutative Semigroups, Semigroup Forum 53 (1996), 140-154.
  • P. A. Grillet, Computing Finite Commutative Semigroups: Part II, Semigroup Forum 67 (2003), 159-184.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n).

Extensions

a(8) (from the Satoh et al. paper) supplied by Richard C. Schroeppel, Jul 22 2005
a(9) and a(10) from Grillet references sent by Jens Zumbragel (jzumbr(AT)math.unizh.ch), Jun 14 2006

A079195 Number of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 2, 666, 1047436, 30517547395, 21936950639192784, 459986536544739894613595, 324518553658426726783148869733112
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A023815, A079192, A079196 (isomorphism classes), A079197, A079198.

Formula

A079192(n) + a(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079197(n,k)*A079210(n,k).
a(n) = A023813(n) - A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A079197 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 1, 1, 4, 5, 107, 0, 0, 0, 5, 0, 28, 488, 43389
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
First four rows: 0; 0,1; 1,4,5,107; 0,0,0,5,0,28,488,43389
A079195(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
The sum of each row x of this sequence is given by A079196(x).

Crossrefs

A079199 Number of isomorphism classes of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 12, 130, 1590, 26491, 1610381, 3683808612, 105978166390449
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079200.
Since this is the number of nonisomorphic noncommutative semigroups of order n, A079199(n)=A027851(n)-A001426(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

Added terms a(5)-a(9). - Stanislav Sykora, Apr 03 2016

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A079231 Number of isomorphism classes of non-associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 2187, 147067071
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079202.

Crossrefs

A079233 Number of isomorphism classes of non-associative non-commutative non-anti-associative anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 992, 31853003
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079203.

Crossrefs

A079235 Number of isomorphism classes of non-associative non-commutative anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 8, 13138
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079204.

Crossrefs

A079237 Number of isomorphism classes of non-associative non-commutative anti-associative anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 2, 4642
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079205.

Crossrefs

Showing 1-10 of 15 results. Next