cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A079196 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 1, 117, 43910, 254429575, 30468670168769, 91267244789189717968, 8048575431238519331999349995, 24051927835861852500932966021639447717, 2755731922430783367615449408031031255128360423993
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079197.
Cf. A001329, A001425, A001426, A079193, A079195 (labeled case), A079199.

Formula

A079193(n) + a(n) + A079199(n) + A001426(n) = A001329(n).
a(n) = A001425(n) - A001426(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(10) added by Andrew Howroyd, Jan 26 2022

A023815 Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.

Original entry on oeis.org

1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Row sums of A058167.
Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.

Formula

a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(8) from Andrew Howroyd, Jan 26 2022
a(9) from Andrew Howroyd, Feb 14 2022

A079197 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 1, 1, 4, 5, 107, 0, 0, 0, 5, 0, 28, 488, 43389
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
First four rows: 0; 0,1; 1,4,5,107; 0,0,0,5,0,28,488,43389
A079195(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
The sum of each row x of this sequence is given by A079196(x).

Crossrefs

A079230 Number of non-associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 13026, 3529190912
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079202 and the corresponding element of A079210.

Crossrefs

A079232 Number of non-associative non-commutative non-anti-associative anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 5826, 764303896
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079203 and the corresponding element of A079210.

Crossrefs

A079234 Number of non-associative non-commutative anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 48, 313560
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079204 and the corresponding element of A079210.

Crossrefs

A079236 Number of non-associative non-commutative anti-associative anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 4, 108000
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079205 and the corresponding element of A079210.

Crossrefs

A079244 Number of associative commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 6, 63, 1140
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079209 and the corresponding element of A079210.

Crossrefs

A079240 Number of associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 0, 48, 2344, 153000, 15875924, 7676692856, 148188196673360
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Formula

A079230(n) + A079232(n) + A079234(n) + A079236(n) + A079195(n) + a(n) + A079242(n) + A079244(n) + A063524(n) = A002489(n).
a(n) = Sum_{k>=1} A079207(n,k)*A079210(n,k).
a(n) = A023814(n) - A023815(n) - A079242(n). - Andrew Howroyd, Jan 27 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 27 2022
Showing 1-10 of 13 results. Next