cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A001426 Number of commutative semigroups of order n.

Original entry on oeis.org

1, 1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337
Offset: 0

Views

Author

Keywords

References

  • P. A. Grillet, Computing Finite Commutative Semigroups, Semigroup Forum 53 (1996), 140-154.
  • P. A. Grillet, Computing Finite Commutative Semigroups: Part II, Semigroup Forum 67 (2003), 159-184.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n).

Extensions

a(8) (from the Satoh et al. paper) supplied by Richard C. Schroeppel, Jul 22 2005
a(9) and a(10) from Grillet references sent by Jens Zumbragel (jzumbr(AT)math.unizh.ch), Jun 14 2006

A023814 Number of associative binary operations on an n-set; number of labeled semigroups.

Original entry on oeis.org

1, 1, 8, 113, 3492, 183732, 17061118, 7743056064, 148195347518186, 38447365355811944462
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Extensions

a(8), a(9) from Distler and Kelsey (2013). - N. J. A. Sloane, Feb 19 2013

A023813 a(n) = n^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 8, 729, 1048576, 30517578125, 21936950640377856, 459986536544739960976801, 324518553658426726783156020576256, 8727963568087712425891397479476727340041449, 10000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Comments

Determinant of n X n matrix M_(i,j) = binomial(n*i,j). - Benoit Cloitre, Sep 13 2003
Number of commutative binary operations on an n-set. Labeled commutative groupoids.

Crossrefs

Programs

Formula

a(n) = Product_{k=1..n} n^k. - José de Jesús Camacho Medina, Jul 12 2016
a(n) = n^A000217(n). - Alois P. Heinz, Aug 06 2018

Extensions

Better description from Amarnath Murthy, Dec 29 2001

A079195 Number of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 2, 666, 1047436, 30517547395, 21936950639192784, 459986536544739894613595, 324518553658426726783148869733112
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A023815, A079192, A079196 (isomorphism classes), A079197, A079198.

Formula

A079192(n) + a(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079197(n,k)*A079210(n,k).
a(n) = A023813(n) - A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A079201 Number of isomorphism classes of associative commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

1, 1, 0, 3, 0, 0, 3, 9, 0, 0, 0, 3, 0, 0, 16, 39, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 6, 0, 0, 4, 91, 0, 55, 0, 715, 1258, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Number of elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!).

Examples

			Triangle T(n,k) begins:
  1;
  1;
  0, 3;
  0, 0, 3, 9;
  0, 0, 0, 3, 0, 0, 16, 39;
  0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201;
		

Crossrefs

Row sums are A001426.

Formula

A079194(n,k) + A079197(n,k) + A079200(n,k) + T(n,k) = A079171(n,k).
T(n, A027423(n)) = A058105(n).
A023815(n) = Sum_{k>=1} T(n,k)*A079210(n,k).

Extensions

a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022

A079240 Number of associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 0, 48, 2344, 153000, 15875924, 7676692856, 148188196673360
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Formula

A079230(n) + A079232(n) + A079234(n) + A079236(n) + A079195(n) + a(n) + A079242(n) + A079244(n) + A063524(n) = A002489(n).
a(n) = Sum_{k>=1} A079207(n,k)*A079210(n,k).
a(n) = A023814(n) - A023815(n) - A079242(n). - Andrew Howroyd, Jan 27 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 27 2022

A079198 Number of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 50, 2352, 153002, 15876046, 7676692858
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

a(n) + A079192(n) + A079195(n) + A023815(n) = A002489(n).
Each a(n) is equal to the sum of the products of each element in row n of A079200 and the corresponding element of A079210.
Since this is the number of labeled noncommutative semigroups on an n-set, a(n) = A023814(n)-A023815(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

a(5)-a(7) added by Stanislav Sykora, Apr 03 2016

A079192 Number of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 6, 18904, 4293916368, 298023193359221998, 10314424798468598595515695154, 256923577521058877628624940679487983651948, 6277101735386680763835789098689112757675628513119817261598
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A002489, A023813, A023814, A023815, A079193 (isomorphism classes), A079194, A079195, A079198.

Formula

a(n) + A079195(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079194(n,k)*A079210(n,k).
a(n) = A002489(n) - A023813(n) - A023814(n) + A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A058167 Triangle read by rows: T(n,k) is the number of labeled commutative semigroups of order n with k idempotents.

Original entry on oeis.org

1, 4, 2, 24, 30, 9, 260, 492, 312, 76, 4805, 10060, 9900, 4900, 1065, 157956, 284130, 348420, 259500, 112500, 22566, 12277440, 11892846, 14768775, 14093380, 9063600, 3592554, 674611, 3287166928, 896150920, 812261856, 854806120, 707722680, 413149464, 152565280, 27019896
Offset: 1

Views

Author

Christian G. Bower, Nov 15 2000

Keywords

Examples

			Triangle begins:
     1;
     4,     2;
    24,    30,    9;
   260,   492,  312,   76;
  4805, 10060, 9900, 4900, 1065;
  ...
		

Crossrefs

Row sums give A023815.
Main diagonal is A058164(n+1).
Cf. A058116 (isomorphism classes).

Extensions

a(29)-a(36) from Andrew Howroyd, Jan 27 2022
Showing 1-10 of 13 results. Next