cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478, 12418001077381302684
Offset: 0

Views

Author

Keywords

References

  • David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (A027851(n) + A029851(n))/2.

Extensions

a(9) added by Andreas Distler, Jan 12 2011
a(10) from Distler et al. 2012, added by Andrey Zabolotskiy, Nov 08 2018

A027851 Number of nonisomorphic semigroups of order n.

Original entry on oeis.org

1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292
Offset: 0

Views

Author

Christian G. Bower, Dec 13 1997, updated Feb 19 2001

Keywords

Crossrefs

Formula

a(n) = A001423(n)*2 - A029851(n).
a(n) + A079173(n) = A001329(n).

Extensions

a(8)-a(9) from Andreas Distler, Jan 13 2011

A023814 Number of associative binary operations on an n-set; number of labeled semigroups.

Original entry on oeis.org

1, 1, 8, 113, 3492, 183732, 17061118, 7743056064, 148195347518186, 38447365355811944462
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Extensions

a(8), a(9) from Distler and Kelsey (2013). - N. J. A. Sloane, Feb 19 2013

A079196 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 1, 117, 43910, 254429575, 30468670168769, 91267244789189717968, 8048575431238519331999349995, 24051927835861852500932966021639447717, 2755731922430783367615449408031031255128360423993
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079197.
Cf. A001329, A001425, A001426, A079193, A079195 (labeled case), A079199.

Formula

A079193(n) + a(n) + A079199(n) + A001426(n) = A001329(n).
a(n) = A001425(n) - A001426(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(10) added by Andrew Howroyd, Jan 26 2022

A023815 Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.

Original entry on oeis.org

1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Row sums of A058167.
Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.

Formula

a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(8) from Andrew Howroyd, Jan 26 2022
a(9) from Andrew Howroyd, Feb 14 2022

A079199 Number of isomorphism classes of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 12, 130, 1590, 26491, 1610381, 3683808612, 105978166390449
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079200.
Since this is the number of nonisomorphic noncommutative semigroups of order n, A079199(n)=A027851(n)-A001426(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

Added terms a(5)-a(9). - Stanislav Sykora, Apr 03 2016

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A079201 Number of isomorphism classes of associative commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

1, 1, 0, 3, 0, 0, 3, 9, 0, 0, 0, 3, 0, 0, 16, 39, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 6, 0, 0, 4, 91, 0, 55, 0, 715, 1258, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Number of elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!).

Examples

			Triangle T(n,k) begins:
  1;
  1;
  0, 3;
  0, 0, 3, 9;
  0, 0, 0, 3, 0, 0, 16, 39;
  0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201;
		

Crossrefs

Row sums are A001426.

Formula

A079194(n,k) + A079197(n,k) + A079200(n,k) + T(n,k) = A079171(n,k).
T(n, A027423(n)) = A058105(n).
A023815(n) = Sum_{k>=1} T(n,k)*A079210(n,k).

Extensions

a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022

A079241 Number of isomorphism classes of associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 0, 10, 127, 1588, 26487, 1610379, 3683808608
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079207.

Formula

A079231(n) + A079233(n) + A079235(n) + A079237(n) + A079196(n) + a(n) + A079243(n) + A079245(n) + A063524(n) = A002489(n).
a(n) = A027851(n) - A001426(n) - A079243(n). - Andrew Howroyd, Jan 27 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 27 2022
Showing 1-10 of 21 results. Next